A REPORT ON GEOTECHNICAL INVESTIGATION FOR

PROPOSED G+VIII STORIED BUILDING

AT

MOUZA- SHYAMNAGAR NOW KRISHNAPUR, C.S.DAG NO.-960 - 966, C.S KHATIAN NO. - 28 IN RESPECT OF MUNICIPAL HOLDING NO.-72, GOURI NATH SHASTRI SARANI, J.L. NO.- 32/20, WARD NO. - 27, UNDER SOUTH DUM DUM MUNICIPALITY, P.S.- DUM DUM, DIST.-24 PARGANAS(N.) CONDUCTED

BY

BOSE ENGINEERS

53, PURNA CHANDRA MITRA LANE KOLKATA – 700033

An ISO 9001-2015 Certified Organization

AN APPROVED GEO-TECHNICAL INVESTIGATION CONSULTANT

UNDER THE MINISTRY OF ROAD TRANSPORT AND

HIGHWAYS, GOVERNMENT OF INDIA

Visit us: www.boseengineers.com

Job No.	Date	Report Prepared By	Report Checked By	Approved By	
BE-2018-85	July,	M. Ghosh	R. Mitra	Dr. S.K. Bose	
	2018	Myrigh	Rm	Bor	

CONTENTS

	Section	Page
1.0	Introduction	1
2.0	Field Exploration	1-3
	2.1 Boring	2
	2.2 Sampling	2-3
	2.3 Standard Penetration Test	
	2.4 Measurement of Water Table	3 .
3.0	Laboratory Testing	4-5
	3.1 Atterberg Limits and Natural Water Content	
	3.2 Bulk density	5 5
	3.3 Undrained Triaxial Test/ Unconfined Compression Test	5
	3.4 Grain Size Analysis	5
	3.5 Consolidation Test	5
4.0	Soil Profile and Properties	6
5.0	Hydrogeology	6
6.0	Calculations	7
	6.1 Pile Foundation	7
7.0	Discussions on Foundation	8
8.0	Recommendations	9
-	Appendix	
	Figure 1: Location of Borehole	10
	Figure 2: Generalised Subsoil Profile	11
	Figure 3: Distribution of N-value with Depth	12
	Table 1: Laboratory Test Results	13-14
	Borelog	15-16
	Grain Size Distribution Curves	17-19
	e-logp Curves	20-21
	Mohr Circle Plots	22-23
	Pile Capacity Calculation	24
	Horizontal Capacity Calculation	25

Project: Proposed Building at Mouza- Shyamnagar now Krishnapur, C.S.Dag No.- 960 - 966.

1. Introduction

Soil exploration, investigation and testing of soil samples in connection with the construction of proposed G+VIII storied building at Mouza- Shyamnagar now Krishnapur, C.S.Dag No.-960 - 966, C.S Khatian No. - 28 in respect of Municipal Holding No.-72, Gouri Nath Shastri Sarani, J.L. No.- 32/20, Ward No. - 27, Under South Dum Dum Municipality, P.S.- Dum Dum, Dist.-24 Parganas(N.) was entrusted to M/s Bose Engineers, 53, Purna Chandra Mitra Lane, Kolkata-700033. The objective was to ascertain the subsoil characteristics and stratification and propose suitable load carrying capacity of the soil and facilitate design of the foundation for the proposed structure. The field work involved in the investigation including boring, recovery of samples and in-situ tests were carried on 6th to 8th June, 2018.

The scope of the work comprised of sinking two boreholes. It included advancing the boreholes by wash and auger equipment. The boreholes were of 150 mm in diameter. The scope also included conducting standard penetration tests (SPT), collecting disturbed samples at regular intervals for identification and logging purposes, collecting undisturbed tube samples at suitable intervals or at change of strata whichever is earlier and testing these in the laboratory.

Based on the above, this report presents the subsoil profile and laboratory and field test results. On the basis of field tests and laboratory test results and their analysis thereof, the most suitable type of foundation with it's safe bearing capacity is suggested. The field profile was sometimes modified in the light of laboratory test results.

2. Field Exploration

Geotechnical Investigation was envisaged in an attempt for optimization in the design of foundation for the proposed structures to be constructed at this site. The entire Investigation programme had been divided mainly into two parts, I) Field works & II) Laboratory tests.

- Field works unfold the sub-surface deposit types and their characteristics
- II) Laboratory tests part would help determining the relevant physical and geotechnical

Geotechnical Exploration

Structural Experts

3C BOSE ENGINEERS

Project: Proposed Building at Mouza- Shyamnagar now Krishnapur, C.S.Dag No.- 960 - 966.

properties of the sub-surface deposits leading to finalisation of foundation depths of the structures and the bearing capacity with particular reference to the sub-surface types and their strength parameters and settlement potentials at the site.

A list of the boreholes with the terminating depth and standing water level are presented in a tabular form below:

Bore Hole No.	Terminating Depth (m)	Standing Water Table (m)	Date of Commencement	Date of Completion
01	25.10	-0.60	06.06.18	07.06.18
02	25.10	-1.00	07.06.18	08.06.18

The locations of boreholes are shown in Figure 1.

2.1 Boring

Boring was carried out by wash and auger method to sink nominal 150 mm diameter boreholes to desired depths and operated by a team of experienced technicians. Flush jointed seamless casings were used to stabilize the boreholes and prevent caving of the soil inside the boreholes. The casing pipes were advanced by turning in order to minimize the disturbance. Undisturbed soil samples were collected at suitable intervals or at change of strata whichever is met earlier by open drive sampling method since it was intended to ascertain the subsoil characteristics. The standing water table in each borehole was determined at least 24 hours after the termination of boring work.

2.2 Sampling

Nominal 100 mm diameter undisturbed samples were recovered. The sampling equipment used consists of a two-tier assembly of sample tubes 400 mm in length fitted at its lower end. The sampling assembly was driven by means of a jarring link to its full length or as far down as was found practicable. After withdrawal the ends of the tubes were sealed with wax at both ends and capped before transmission to the laboratory. At close intervals in depth, disturbed samples were collected both from split spoon sampler after the standard penetration test and from cutting edge for identification and logging purpose. These were tagged and

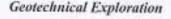
Geotechnical Exploration

Structural Experts

BOSE ENGINEERS

Project: Proposed Building at Mouza- Shyamnagar now Krishnapur, C.S.Dag No.- 960 - 966.

packed in polythene packets and transported to the laboratory. The depthwise locations of all the undisturbed and disturbed samples were used in the preparation of borehole log data and for general identification and classification purposes. The details of boring are presented in the Appendix in the form of bore log sheets.


2.3 Standard Penetration Test

Standard Penetration Tests were conducted in the boreholes at suitable intervals as per IS: 2131-1963 using a split spoon sampler. The split spoon sampler used is of a standard design having an outer diameter of 50.8 mm and inner diameter of 35 mm, driving with a monkey weighing 63.5 kgs, falling freely from a height of 75 cm. A record of the number of blows required to penetrate every 15 cm to a maximum depth of 45 cm was made. The first 15 cm of drive was considered to be seating drive and was neglected. The total blows required to effect each 15 cm of penetration was recorded. The "N" values were obtained by counting the number of blows required to drive the spoon from 15 cm to 45 cm. On completion of a test, the split spoon sampler was opened and soil specimens were preserved in polythene bags for logging purpose.

All the boreholes were sunk with winch. However, raising of hammer for SPT was done manually. Hence there will not be any inertia loss and the efficiency of hammer blows should be considered as 100%.

2.4 Measurement of Water Table

Level of water was noted when struck in. This is termed as observed water level. Standing water level after 24 hours of removal of casing was also noted and shown in the profile.

Project: Proposed Building at Mouza- Shyamnagar now Krishnapur, C.S.Dag No.- 960 - 966.

3. Laboratory Testing

For proper identification and classification of the sub-soil deposits and for deriving adequate information regarding its relevant physical and geotechnical properties at the site under investigation, the soil samples from the 10 cm diameter sampling tubes were extracted in the laboratory by pushing out the core by using the extractor frame. The core was jacked out in a direction that corresponded with the soil movement within the tube during sampling. In general, the following laboratory tests were conducted on the soil samples collected from the exploratory bore holes:

- a) Grain size distribution (Sieve as well as Hydrometer).
- b) Determination of Atterberg Limits.
- c) Determination of Natural Moisture Content.
- d) Determination of Specific Gravity.
- e) Determination of Bulk & Dry Unit Weight.
- f) Strength determination by Triaxial Unconsolidated Undrained Test (UU).
- g) Strength Determination of Unconfined Compression Test on (UC)
- h) One-dimensional Consolidation Test for determining settlement potentiality.

The triaxial tests/unconfined compression test 38 mm diameter x 76 mm long specimens were obtained by jacking out the soil core into thin-walled brass tubes. The inside of the tubs was coated with a thin layer of silicon oil. Self-explanatory test results are presented in the Appendix.

To obtain specimens for consolidation test the odeometer ring was placed on the trimmed horizontal face of the soil within the 10 cm sampling tube and the soil around the cutting edge was gradually removed with a spatula as the ring was gently pushed into the soil. The ring with the soil was then removed by cutting across the soil core with the help of a piano wire saw.

Geotechnical Exploration

Structural Experts

BOSE ENGINEERS

Project: Proposed Building at Mouza- Shyamnagar now Krishnapur, C.S.Dag No.- 960 - 966.

The laboratory tests were done to ascertain the engineering properties of the subsoil and to obtain the necessary data required to design the foundation. These are detailed below. Summary of all the test results are given in a tabular form in Table -1.

3.1 Atterberg Limits and Natural Water Content

Liquid limit, plastic limit and natural water content of the silty clay/clayey silt samples were determined (a) to classify the soil by the IS classification system and (b) to qualitatively assess their consistency and compressibility.

3.2 Bulk density

These were determined by measuring the weight and dimension of triaxial/unconfined compression test samples.

3.3 Undrained Triaxial Test/ Unconfined Compression Test

These were run on the clay/ clayey silt samples to determine their shear strength. The cell pressures employed in triaxial tests were 0.5, 1.0 and 2.0 kg/cm². The samples were tested under quick condition at the rate of 1.25 mm/min and were loaded upto a maximum of 20% of axial strain.

3.4 Grain Size Analysis

The grain-size distribution of a quantity of representative samples were determined from sieve analysis/combined sieve analysis and hydrometer analysis. The results are plotted in the Appendix.

3.5 Consolidation Test

Consolidation tests were run in floating ring type odeometers, in an eight unit consolidation frame under standard load increment ratio of one, starting from ¼ kg/cm² and going up to 8 kg/cm². The e vs. log₁₀p curves are given in the Appendix.

Geotechnical Exploration

Structural Experts

Project: Proposed Building at Mouza- Shyamnagar now Krishnapur, C.S.Dag No.- 960 - 966.

4. Soil Profile and Properties

Based on visual classification and results of field and laboratory tests on the samples recovered the proposed site may be divided into the following major soil strata as described below:

	Layer Deta	nls		4			Plasticity Index (%)	1100	
Stratum No.	Description	Depth beli	ow EGL (m)	Average Field N- False	Bulk Dersup (t/m3)	Liquid Limit (36)		Stear strength Paramoters	
8		From	To	An	10	7	P.	25	
1	Filled up by soil roots etc.	0.00	1.00/1.10			2	2		
н	Firm yellowish brown clayey silt / silty clay with mica, brown spot.	1.00/1.10	5.00/5.30	7 to 8	1.84	43.3	21.1	C= 4.3 t/m ² ,	
ш	Soft to firm greyish silty clay / clayey silt with traces of decomposed woods.	5.00/5.30	11.00/11.40	3 to 7	1.69	52.2	25.6	C= 2.5 t/m ² , \$\phi=0 \text{deg}	
IV	Firm to stiff yellowish / bluish grey silty clay / clayey silt with nusty spots.	11.00/11.40	17.60/17.80	7 to 10	1,86	42.4	20.8	C= 6.0 vm², \$ = 0 deg	
y .	Stiff to very stiff yellowish brown sandy clayey silt with mica.	17.60/17.80	20.10/20.80	14 to 20	1.90*	31.1	14.9	C= 10.7* t/m², \$=0 deg.	
vı	Medium dense to dense yellowish brown silty fine sand with mics.	20.10/20.80	25.10	21 to 28	1.91*	- Non- Plastic		C=0 t/m². •=30-32* deg	

^{*} Suggested

A profile through the boreholes and the distribution of Field N-value with depth are shown in Figure 2 and Figure 3 respectively.

5. Hydrogeology

The ground water table at the site was found to exist at 0.60 m, to 1,00m below the ground level for the boreholes explored during the time of investigation work.

Geotechnical Exploration

Structural Experts

6. Calculations

6.1 Pile Foundation

For bored pile, load bearing capacity is calculated according to IS:2911 (Part-I/Sec-2)-2010.

Skin Friction

 $Q_{SF} = \sum A_S \alpha \tilde{C}$

for cohesive soil

= $\sum A_S K P_{Di} \tan \delta$ for granular soil

As = surface area of pile stem

Č = average cohesion

α = reduction factor

K = co-efficient of earth pressure

PDi = effective overburden pressure

δ = angle of wall friction between pile and soil

Q_{SF} = ultimate capacity due to skin friction

End Bearing

 $Q_{EB} = A_P C_P Nc$

for cohesive soil

 $= A_P P_D N_q$

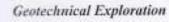
for granular soil

where,

Ap = cross-sectional area of pile tip

Na, Nc = bearing capacity factors

CP = average cohesion at pile tip


QEB = ultimate capacity due to end bearing

Safe bearing capacity of pile

$$= Q_{SAFE} = (Q_{SF} + Q_{EB})/FOS$$

where,

FOS = Factor of safety

Structural Experts

Project: Proposed Building at Mouza- Shyamnagar now Krishnapur, C.S.Dag No.- 960 - 966.

7. Discussions on Foundation

The structure for which the subsoil exploration was conducted is proposed G+VIII storied building.

For anticipated load from superstructure, deep foundation in the form of R.C.C bored cast-in-situ piles is suggested. Piles of different termination level below EGL and different diameters are proposed with a cut-off level at +1.5m below E.G.L. The load carrying capacities of piles are presented below:

	Pile diameter (mm)	Cut-off level	Pile termination level	Safe vertical capacity (t)	Safe uplift capacity (t)	Safe horizontal capacity (t)	Depth of fixity (m)
	450	1.5m		50	34	4.5	4.05
L	500	below	21.0m below EGL	58	38	5.1	4.50
	600	E.G.L.	DEIOW EGIL	76	46	6.8	5.40
	450	1.5m		55	39	4.5	4.05
	500	below	24.0m below EGL	65	44	5.1	4.50
	600	E.G.L.	below Edi.	86	54	6.8	5.40

Geotechnical Exploration

Structural Experts

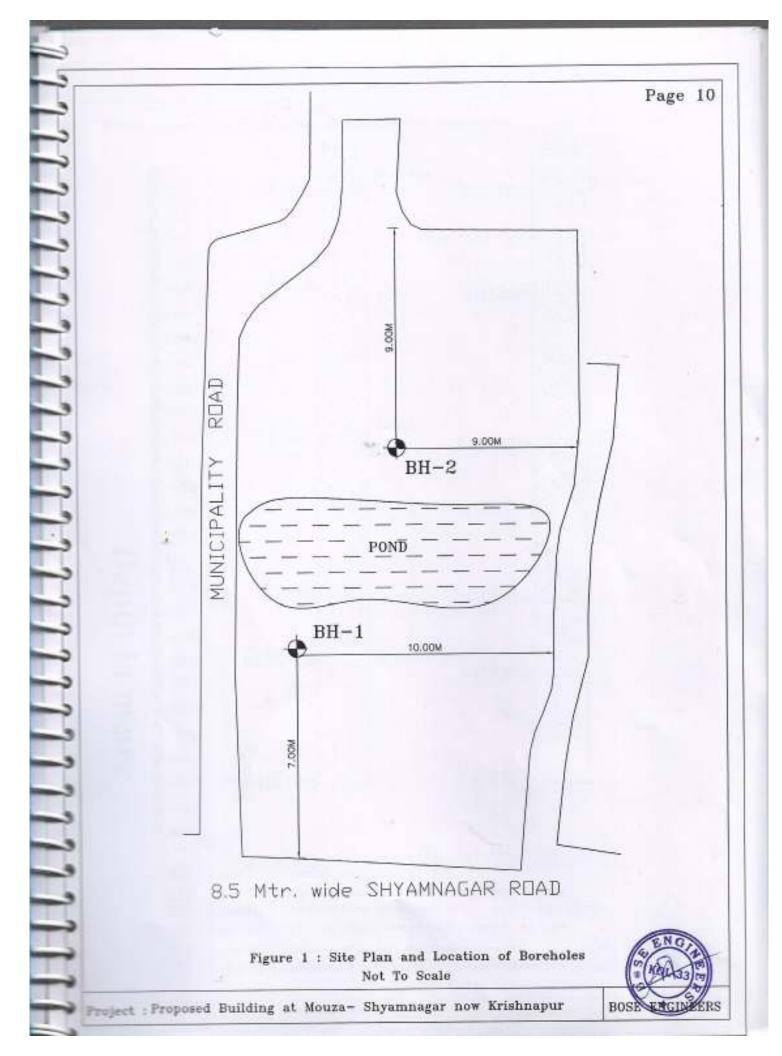
8. Recommendations

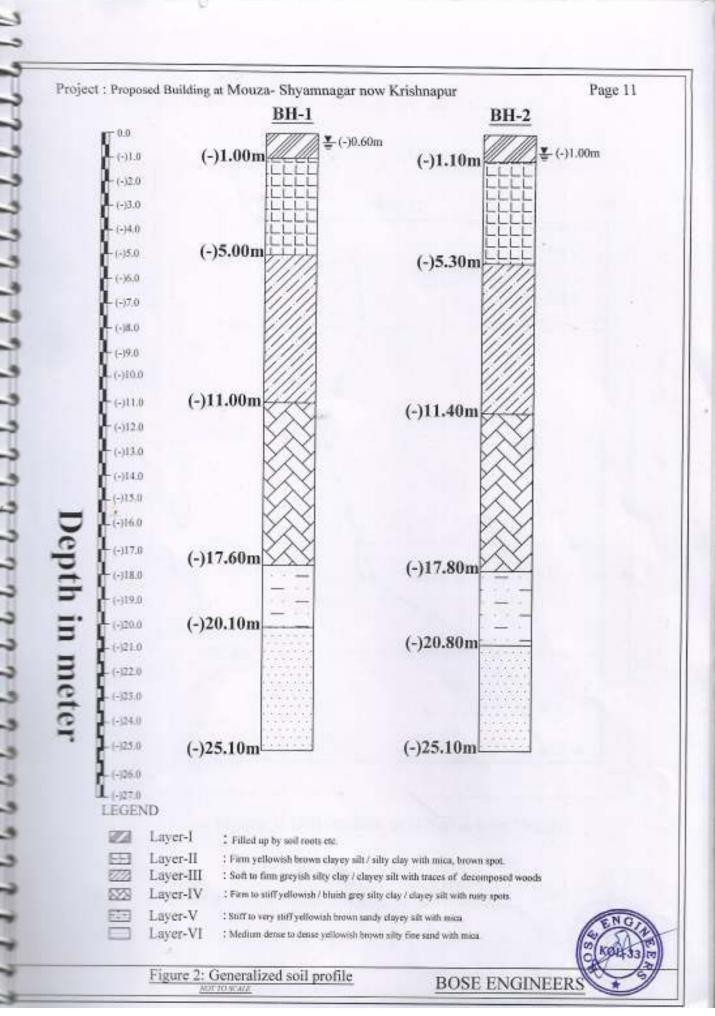
177777777777777777777777777777777

- The subsoil characteristic of site at Mouza- Shyamnagar now Krishnapur, C.S.Dag No.- 960 - 966, C.S Khatian No. - 28 in respect of Municipal Holding No.-72, Gouri Nath Shastri Sarani, J.L. No.- 32/20, Ward No. - 27, Under South Dum Dum Municipality, P.S.- Dum Dum, Dist.-24 Parganas(N.) in connection with the construction of proposed G+VIII storied building was determined from soil exploration with two boreholes.
- Deep foundation in the form of RCC bored cast-in-situ piles are suggested for anticipated loading from the superstructure. The cut-off level of pile shall be 1.5m below E.G.L with different termination level below EGL. Safe load carrying capacities for such pile of different diameter shall be governed by table given in section 7.0.
- The load carrying capacities of the piles shall be checked and confirmed by pile load test.
 The piles should be placed at a centre to centre spacing of three times the diameter of the pile.
- Suitable pile cap shall be provided for the piles in a group.
- The final decision regarding the foundation will depend on the judgment of the engineer concerned.

187

GEOTECHNICAL CONSULTANT


DR, S.K. BOSE Ph.D., M.C.E. (SOIL), B.C.E. (HONS.), MIGS, MIRC


DR. SUJIT KUMAR BOSE
Ph.D., M.C.E. (Soil), B.C.E. (Hons.)
MIGS. MIRC
Empanneled Geotechnical
Engineer (I) under KMC
Licence No: GT-12

Geotechnical Exploration

Structural Experts

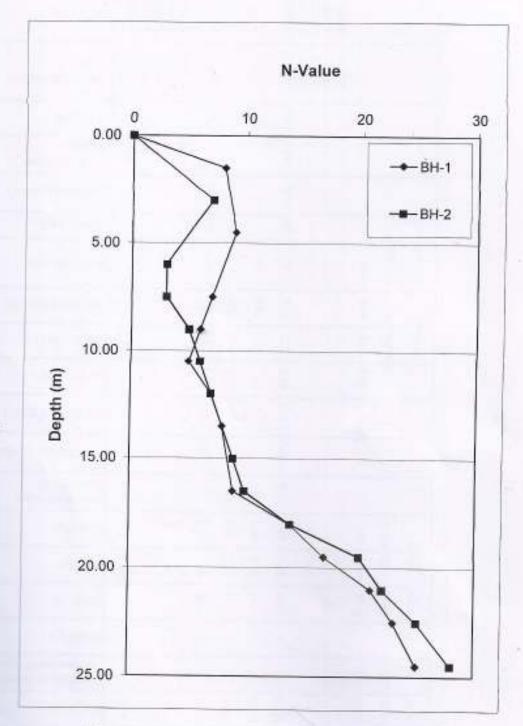


Figure 3: Distribution of N-Value with Depth

0.0266 0.0235 0.0181 0.0143 0.0113

0.25-0.5 0.5-1.0 1.0-2.0 2.0-4.0 4.0-8.0

83

0.43

3

ö

22

23.3

46

1.474

1.849

13

33.8

63.3

2.91

3.00

0

2.52

2.0

0.25

3

蔓

30.3 25.6

31.1

61.4

1,281

1,692

32.1

41.8 36.5 40

57.2

66.0 131

6.00

2 à. 0. \Box

62.2

40 1-

9.00

8

N

1-H8

픙 픙

26

52.2 58.1

w^ (cu_{ട്}രു)

(*mɔ/g¾)

Sp. Gravity

(degree)

Pressure Range

Angle of Friction

Type of Test

IS Classification

Plasticity Index (%)

Plastic Limit (%)

Liquid Limit(%)

Dry density(gm/c.c.)

Brilk Density (gm/cc)

Content (%)

Clay (%)

(%) HIS

(%) pues

Gravel (%)

Debth (m)

Bore Hole No.

Type

Resistance 'N' value

Standard Penetration

AntisioM lenuteM

Co-hesion (kg/cm²)

0.0269 0.0214 0.0200 0.0195 0.0155

0.25-0.5 0.5-1.0 1.0-2.0 2.0-4.0 4.0-8.0

2.68

3.0

0.85

3

ō

21.6

22.8 29.3

44.4

22.2 1.873 1.533

62.7 58.8

28

		00	100	
0.12	15.6	ji,	90	
62.7 34.3 22.2 1.8/3 1.533 44.4 24.0	32.2 16.6	Non-Plastic	Non-Plastic	
ţ	32.2	ž	ž	
3				
0				
777				
3	21.4	10.75*	9.82	
di di	72			
967	24.25 54.4 21.4	89.25	90.05	
7	**	79.	40	
,	=	17	n	
15.00	18.00	21.00	24.50	Ŋ
>	0.	0.	ь	* Silt & Clay
3				SIII

SW-SM SW-SM

ರ

UC: Unconfined Compression Test UU: Unconsolidation Undrained Test

TABLE 1: LABORATORY TEST RESULTS

u^ (cw _{ş,} kð)	u	0.0261	0.0241 0.0200 0.0144 0.0097			0.0275	0.0178 0.0132 0.0030				
kg/cm²) ressure Range		0.25-0.5	0.5-1.0 1.0-2.0 2.0-4.0 4.0-8.0			0.25-0.5	20-40 20-40 40-80				
Sp. Gravity	2.65	2.64				2.67					
Angle of Friction degree)		2.0				3.0					
Co-hesion (kg/cm²)	0.45	0.43				09'0					
Type of Test	3	3				3					
IS Classification	ō	ō		Ð	H	ō		ö	ರ	SW-SM	SW-SM
Plasticity Index (%)	21.1	21.8		27.4	28,4	23.2		20.8	14.9		
Plastic Limit (%)	22.2	23.3		28.8	29.4	24.1		21.8	16.2	Non-Plastic	Non-Plastic
(%))imid biupid	43.3	45.1		56.2	67.8	47.3		42.4	31.1	−Ş.	-8-
Dry density(gm/c.c.)	1.504	1.486				1.504		-00	1005710		
Bulk Density (gm/cc)	1.863	1.853		T		1.886					
Matural Moisture Content (%)	23.9	24.7			Ī	24.1				Ī	
Clay (%)	32.6	3.5		37.2	39.6	33.2		31.7	15.4	to to	4
(%) માંડ	64.2	65.5		61.4	58.2	64.1		65,5	64.4	12.25	7.80*
(%) pues	3.18	3.00		1.42	1 18	2.71		2.78	20.18	87.75	92.20
(%) lavei		40		,	V.	14				,	
Standard Penetration	1.2			6	9	11	1	5	20	52	28
Depth (m)	25	4.50		7.50	10.50	13.50		16.50	19.50	22.50	24.50
1ype	0	ם		n.	п	5		n.	а.	Q.	n.
Bore Hole No.					2	:-H8					

UC: Unconfined Compression Test UU: Unconsolidation Undrained Test

BOSE ENGINEERS

BORE / DRILL LOG

Georechnical Investigation for proposed G+VIII storied building at Mousa-Shyamnogar now Krishnapur, C.S.Dag No.-960 -966, C.S Khatian No. - 28 in respect of Municipal Holding No.-72, Gouri Noth Shastri Sarani, J.L. No - 32/20, Ward No. - 27, Under South Dum Dum Municipality, P.S.- Dum Dum, Dist.-24 Parganas(N)

Bore Hole No. 1

1-110

Location: Krishnapur

Ground Elevation:

0.0m

Water Level (Static):

Method of Boring / Drilling:

Wash & Auger

Standing Water Level 1

0.60m b.p.l.

Dia of Boring / Dolling t

150 mms

Ê	Dept	(m)	(8)	guilda		SPT	No. of	blows		
Date (dd / mm)	From	To	Lesigth (m)	Nature of Sampling	0-15 cm	15-30 cm	30-45 cm	45-60 cm	N Value	Description
06/06/18	0.50			D						Filled up by soil roots etc.
	1.00			D		-				1.00m
	1.50	2.10	0.60	р	3	4	4	5	8	Firm yellowish brown clayey sit / silty clay with
	3:00	3.45	0.45	· U						mica, brown spot.
	4,50	5.10	0.60	P	3	4	5	5	9	5.00m
2	6.00	6.45	0.45	U						Firm greyish silty clay / clayey silt with traces of
	7.50	8.30	0.60	P	3	4	3	3	(7)	decomposed woods
	9.00	9.60	0.60	р	4	3	3	4	6	
	10.50	11,10	0.60	P	2	2	3	3	5	11.00m —
	12.00	12.60	0.60	· p	2	3	4	5	7	
	13.50	14.10	0.60	p	3	3	5	7	8	Firm to stiff yellowish / bluish grey sity clay / claye sit with rusty spots.
	15.00	15.45	0.45	U						
	16.50	17.10	0.60	P	3	4	5	6	9	17.60m
	18.00	18,60	0.60	P	5	7	7	9	14	Stiff yellowish brown sandy dayey sit with mica.
	19.50	20.10	0:60	P	6:	. 8	9	10	17	20.10m
	21.00	21.60	0.60	P	7	9	12	14	21	
	22.50	23.10	0.60	P	8	10	13	15	23	Medium dense to dense yellowish brown sity fine sand with mica.
107.06.18	34.50	25.10	0.60	P	8	11	14.	17.	25	
	25.10	(Te	minatio	n Depth	0					

BOSE ENGINEERS

BORE / DRILL LOG BH-2

Projecti

Geotechnical Investigation for proposed G+VIII storsed building at Moura-Shyamoagar now Krishnapur, C.S. Dag No. 960 -966, C.S Khatian No. - 28 in respect of Municipal Holding No.-72, Gours North Shastri Sacani, J.L. No - 32/20, Ward No. - 27, Under South Dum Dum Municipality, P.S.- Dum Dum, Dist.-24

Parganas(N)

Location: Krishnapur

Water Level (Static):

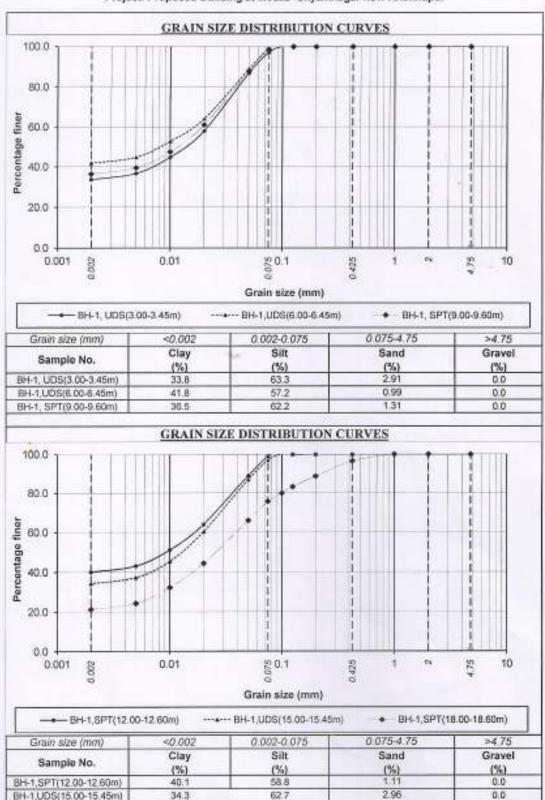
1.00m h.g.l Standing Water Level 1

Ground Elevation:

Bare Hole No. :

0.0m

Method of Boring / Drilling :

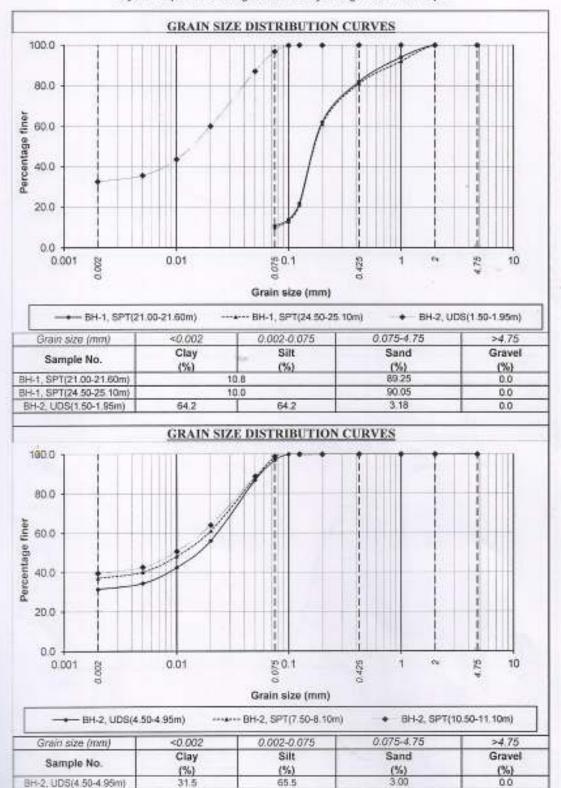

Wash & Auger

Dia of Boring / Drilling:

150 mm

î	Depth	(m)	8	inpling		SPT	No. of	hlows		
Date (dd / mm)	Fram	To	Length (m)	Nature of Sempling	0-15 cm	15.30 cm	30-45 cm	45-60 cm	N. Value	Description
07.06.18	0.50			D						Filled up by sail roots etc.
	1.00			D						1.10m
	1.50	1.95	0.45	U						en a la company de la description de la constitución de la constitució
	3.00	3.60	0.60	P	2	3	4	5	7	Firm yellowish brown dayey sit / sity day with mica, brown spot.
	4.50	4.95	0.45	U						5.30m
1	6.00	6.60	0.60	P	1	1	2	2	3	
100	7.50	8.10	0.60	·P	1:	1.0	2	9	3	Soft to firm greyish sity day / dayey sit with
	9.00	9.60	0.60	P	i	2	3	4	- 5	traces of decomposed woods
	10.50	11.10	0.60	P	2	3	3	5	6	11.40m
	12:00	12.60	0.60	P	2	3,1	4	5	7	
	13.50	13,95	0.45	υ						Firm to stiff yellowish / bluish grey silty clay / dayer silt.
	15.00	15.60	0.60	P	3	4	5	7	9	
	16.50	17.10	0.60	P	3	5	-5.	7	10	THE PROPERTY OF THE PARTY OF TH
	18.00	18.60	0.60	p	5	6	8	. 9	14	55ff to very stiff yellowish brown sandy clayey sit
	19.50	20.10	0.60	p	6	9	- 11	13	20	with mica. 20.80m
	21.00	21.60	0.60	P	8	10	:12	13	22	DE TOTAL DE LA CONTRACTOR DEL CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR DE LA CONTRACTOR
	22.50	23.10	10.60	P	9	12	13	15	25	Medium dense to dense yellowish brown silty fine sand with mice.
08.06.18	24.50	25.10	0.60	P	11	13	75	17	28	AND THE STATE OF T
	25.10	CF	erminati	on Dep	th)					

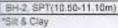
54.4



BH-1,SPT(18.00-18.60m)

21.4

24.25



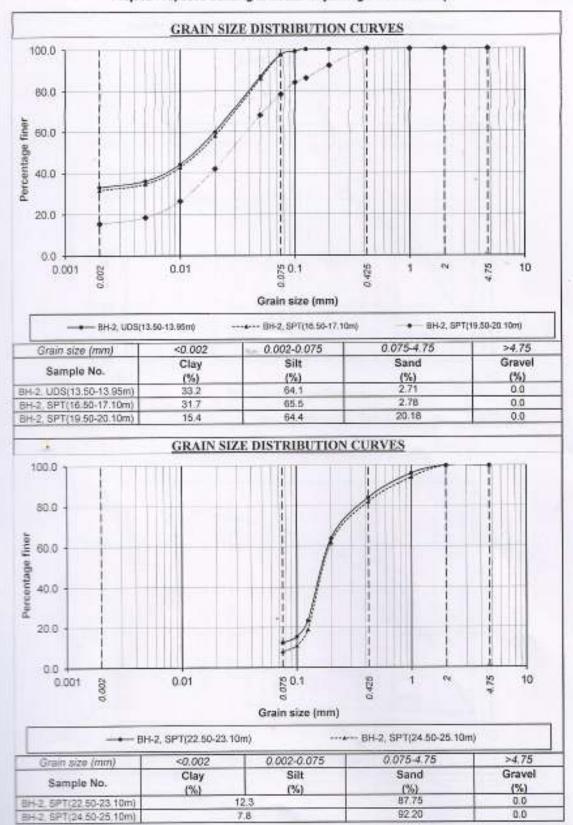
61.4

59.2

37.2

39.6

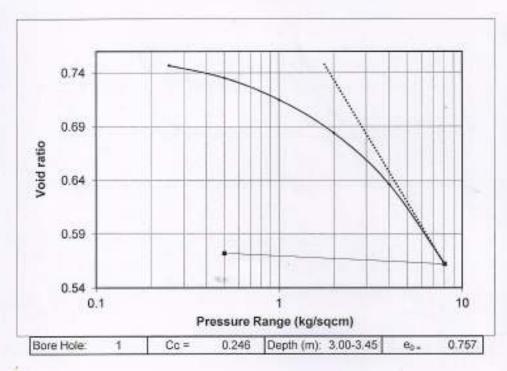
BH-2, SPT(7,50-8.10m)

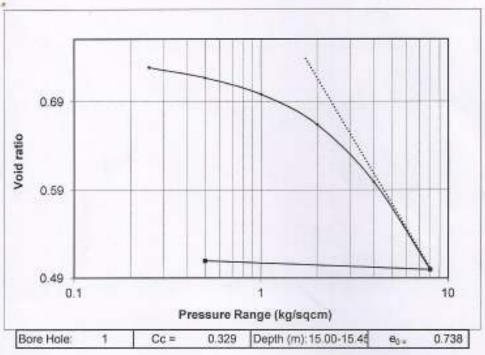


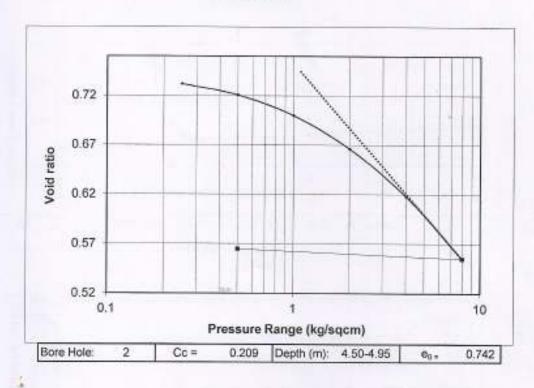
0.0

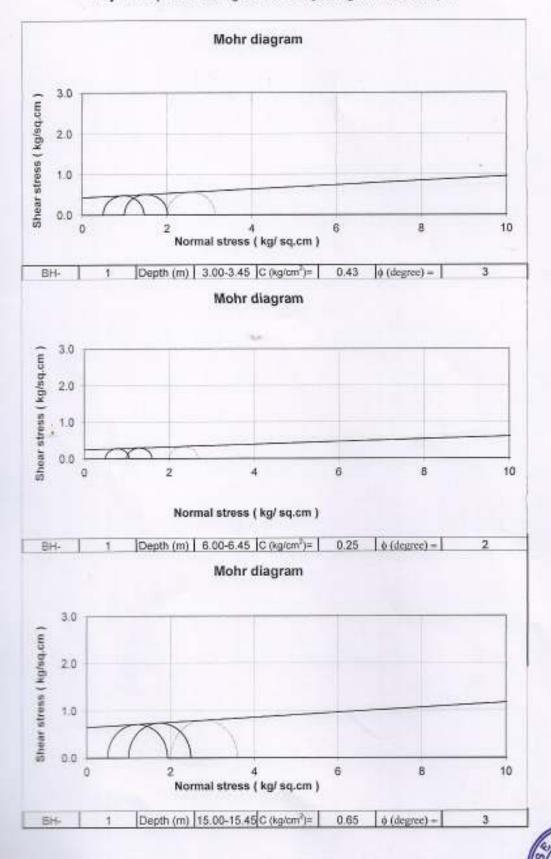
0.0

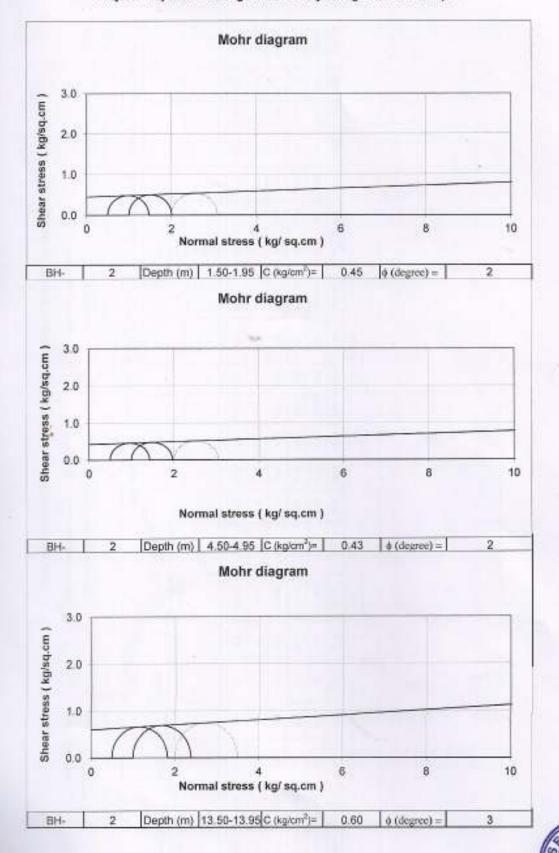
1.42


1.18




e-logp curve




e-logp curve

Project: Proposed Building at Mouza- Shyamnagar now Krishnapur

NOSE ENDAMENS

Determination of Vertical Load Bearing Capacity of "Bored Cast-in-situ Pile"

	00'0	22	No record
	Secured Level RL(ns):	Pile Langifri(N)Y	
	-1.50 m	-24.00	Van 2001 11 10 20 20 20 20 20 20 20 20 20 20 20 20 20
884.1			
1000	Car Off Level (RL)	Ple Tp Lovel (W)	
6.2	10		
factor of Bollety for Base lassifience	Factor of Safety for Shaft Principe 2.5		
E			
100	8 #	4.0	
Pik Dawrier	Corto Premare Coefficient.	Community By	

	Serv Lond (Toward)		12.1	7.02	41.5	51.4	9.99	
	Total Uff. Capacity. F. (Tomas)		30.2	11.7	103.7	128.6	161.5	
A.)	2	00'0	95.22	47,08	99.11	22.601	180.70	
A,1 . a.	1	000	22.58	34.50	46.08	18.60	000	
Tang.	*	1.000	0.960	1.000	0.740	0.395	0.000	
Shaft Friction P., =(XX, P., Tank), A., a.c.A.)	25.7mg	00.0	000	000	000	000	20.00	
tion P _m	KA, Tan KA, Tan	000	000	000	000	000	245	
aft File	ž.	000	989	9.42	10.37	868	6.13	
15	Parameter of the Control of the Cont	000	147	432	920	930	5.00	+
. 4 N.	4]	0.000	7.500	4,595	10.608	18.908	30.776	1
0.8 x 0.NQ	494,096	000	000	000	000	000	4.26	- Appets
See Resistants, Pp. + A, * CCN, + q.N, + CS.r.D.NJ	į	000	000	000	000	00'0	150.48	Up ITT Copocity *
	ž	18.00	38.70	23.40	94.00	96.30	000	
1	t	900	000	000	000	000	27.53	ı
Based on Assemble Fit has	2	000	000	000	000	9000	26,40	
1	ź	9.00	B	8	9.00	9.00	9.00	Ī
	Angle of Wall (one Wayle of Persons of February of February 2 and (1/10.00 ²)) and (1/10.00 ²) (2/10.00 ²)	000	2.94	0.70	570	8.70	5.70	4
	Solowyski Carl Varged all Int (10/e)	0.600	0.80	0.690	0.860	0.900	0.910	99
	Age of the	8	00	900	00	0.0	31.0	
	\$ d -	0	0	0	0	0	×	
	Cobesies, C (nost)	8.0	7	2.5	0.0	10.7	0.0	og Centrify
	A district of the second of th	00	35	09	9.0	2.5	8.9	Safe Load Carrying Capacity of Pile
	T in	977	-6.00	-11.00	-17.60	-20.10	01'92-	
	1 5 8	00'0	-1.00	9.00	-11.00	-17.60	-20.10	

Sample Calculation to Determine Horizontal Capacity

Code used:	IS 2911 (Part1	/sec-2) 2010					
Diameter of pile			500 mm				
Grade of ceneret	e =		25 M				
Grade of reinforce	cement =	415 Fe					
Percentage of rei	nforcement =	1.0					
	ering resistance =	Cohe	esive				
K ₂ =	Acres A cres of the control of		0000 kN/m ²	(Table-4 Annex C)			
Effective cover of	f reinforcement, d1 =		80 mm				
K=		80	0.00				
Modulus of Elast	icity of concrete, E =	2500	0000 kN/m ²				
Moment of Inerti	a, I =	0.00	3068 m ⁴				
R =	2.09 cm						
$L_1 =$	0 cm	200					
$L_1/R =$	0.00						
From Fig. 2	$L_f/R =$	1.9 For Fre	e Head Pile				
and the second	-	2.15 For Fix	ed Head Pile				
Hence	, L _t =	3.98 m	For Free	Head Pile			
4	-	4.50 m	For Fixed	d Head Pile			
For Free Head P	ile :						
Deflection at the	pile head =	0.0003 xQ	em				
Maximum allowa	ble deflection =	0.5 cm	The second secon				
	Q-	1.83 t					
For Fixed Head	Pile:						
Deflection at the	pile head =	0.00010 xQ	cm				
Maximum allowa	ble deflection =	0.5 cm					

5.1 t

5.1 t

Therefore, consider horizontal capacity for fixed head pile =