A REPORT ON GEOTECHNICAL INVESTIGATION FOR

PROPOSED G+VIII STORIED BUILDING

AT

MOUZA- SHYAMNAGAR NOW KRISHNAPUR, C.S.DAG NO.-960 - 966, C.S KHATIAN NO. - 28 IN RESPECT OF MUNICIPAL HOLDING NO.-72, GOURI NATH SHASTRI SARANI, J.L. NO.- 32/20, WARD NO. - 27, UNDER SOUTH DUM DUM MUNICIPALITY, P.S.- DUM DUM, DIST.-24 PARGANAS(N.) CONDUCTED

BY

BOSE ENGINEERS

53, PURNA CHANDRA MITRA LANE

KOLKATA - 700033

An ISO 9001-2015 Certified Organization

AN APPROVED GEO-TECHNICAL INVESTIGATION CONSULTANT

UNDER THE MINISTRY OF ROAD TRANSPORT AND

HIGHWAYS, GOVERNMENT OF INDIA

Visit us: www.boseengineers.com

Job No.	Date	Report Prepared By	Report Checked By	Approved By
RF 2010 05	July,	M. Ghosh	R. Mitra	Dr. S.K. Bose
BE-2018-85	2018	1 Shorh	Rm	Boy

CONTENTS

	Section	Page
1.0	Introduction	
2.0	Field Exploration	1
	2.1 Boring	1-3
	2.2 Sampling	2
	2.3 Standard Penetration Test	2-3
	2.4 Measurement of Water Table	3
3.0	Laboratory Testing	3
	3.1 Atterberg Limits and Natural Water Content	4-5
	3.2 Bulk density	5
	3.3 Undrained Triavial Tant/11	5
	3.3 Undrained Triaxial Test/ Unconfined Compression Test	5
	3.4 Grain Size Analysis	
	3.5 Consolidation Test	5
0.1	Soil Profile and Properties	5
.0	Hydrogeology	6
.0	Calculations	6
	6.1 Pile Foundation	7 7 8 9
.0	Discussions on Foundation	7
.0	Recommendations	8
***	3344411111200011111111111111111111111111	9
-	Appendix	
	Figure 1: Location of Borehole	10
	Figure 2: Generalised Subsoil Profile	11
	Figure 3: Distribution of N-value with Depth	12
	Table 1: Laboratory Test Results	13-14
	Borelog	I I/OHODY/
	Grain Size Distribution Curves	15-16
	e-logp Curves	17-19
	Mohr Circle Plots	20-21
	Pile Capacity Calculation	22-23
	Horizontal Capacity Calculation	24
	Solventy Continuon	25

Project: Proposed Building at Mouza- Shyamnagar now Krishnapur, C.S.Dag No.- 960 - 966.

1. Introduction

Soil exploration, investigation and testing of soil samples in connection with the construction of proposed G+VIII storied building at Mouza- Shyamnagar now Krishnapur, C.S.Dag No.-960 - 966, C.S Khatian No. - 28 in respect of Municipal Holding No.-72, Gouri Nath Shastri Sarani, J.L. No.- 32/20, Ward No. - 27, Under South Dum Dum Municipality, P.S.- Dum Dum, Dist.-24 Parganas(N.) was entrusted to M/s Bose Engineers, 53, Purna Chandra Mitra Lane, Kolkata-700033. The objective was to ascertain the subsoil characteristics and stratification and propose suitable load carrying capacity of the soil and facilitate design of the foundation for the proposed structure. The field work involved in the investigation including boring, recovery of samples and in-situ tests were carried on 6th to 8th June, 2018.

The scope of the work comprised of sinking two boreholes. It included advancing the boreholes by wash and auger equipment. The boreholes were of 150 mm in diameter. The scope also included conducting standard penetration tests (SPT), collecting disturbed samples at regular intervals for identification and logging purposes, collecting undisturbed tube samples at suitable intervals or at change of strata whichever is earlier and testing these in the laboratory.

Based on the above, this report presents the subsoil profile and laboratory and field test results. On the basis of field tests and laboratory test results and their analysis thereof, the most suitable type of foundation with it's safe bearing capacity is suggested. The field profile was sometimes modified in the light of laboratory test results.

2. Field Exploration

Geotechnical Investigation was envisaged in an attempt for optimization in the design of foundation for the proposed structures to be constructed at this site. The entire Investigation programme had been divided mainly into two parts, I) Field works & II) Laboratory tests.

- Field works unfold the sub-surface deposit types and their characteristics
- Laboratory tests part would help determining the relevant physical and geotechnical

Geotechnical Exploration

Structural Experts

3C BOSE ENGINEERS

Project: Proposed Building at Mouza- Shyamnagar now Krishnapur, C.S.Dag No.- 960 - 966.

properties of the sub-surface deposits leading to finalisation of foundation depths of the structures and the bearing capacity with particular reference to the sub-surface types and their strength parameters and settlement potentials at the site.

A list of the boreholes with the terminating depth and standing water level are presented in a tabular form below:

Bore Hole No.	Terminating Depth (m)	Standing Water Table (m)	Date of Commencement	Date of Completion 07.06.18	
01	25.10	-0.60	06.06.18		
02	25.10	-1.00	07.06.18	08.06.18	

The locations of boreholes are shown in Figure 1.

2.1 Boring

Boring was carried out by wash and auger method to sink nominal 150 mm diameter boreholes to desired depths and operated by a team of experienced technicians. Flush jointed seamless casings were used to stabilize the boreholes and prevent caving of the soil inside the boreholes. The casing pipes were advanced by turning in order to minimize the disturbance. Undisturbed soil samples were collected at suitable intervals or at change of strata whichever is met earlier by open drive sampling method since it was intended to ascertain the subsoil characteristics. The standing water table in each borehole was determined at least 24 hours after the termination of boring work.

2.2 Sampling

Nominal 100 mm diameter undisturbed samples were recovered. The sampling equipment used consists of a two-tier assembly of sample tubes 400 mm in length fitted at its lower end. The sampling assembly was driven by means of a jarring link to its full length or as far down as was found practicable. After withdrawal the ends of the tubes were sealed with wax at both ends and capped before transmission to the laboratory. At close intervals in depth, disturbed samples were collected both from split spoon sampler after the standard penetration test and from cutting edge for identification and logging purpose. These were tagged and

Geotechnical Exploration

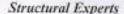
Structural Experts

BOSE ENGINEERS

Project: Proposed Building at Mouza- Shyamnagar now Krishnapur, C.S.Dag No.- 960 - 966.

packed in polythene packets and transported to the laboratory. The depthwise locations of all the undisturbed and disturbed samples were used in the preparation of borehole log data and for general identification and classification purposes. The details of boring are presented in the Appendix in the form of bore log sheets.

2.3 Standard Penetration Test


Standard Penetration Tests were conducted in the boreholes at suitable intervals as per IS: 2131-1963 using a split spoon sampler. The split spoon sampler used is of a standard design having an outer diameter of 50.8 mm and inner diameter of 35 mm, driving with a monkey weighing 63.5 kgs, falling freely from a height of 75 cm. A record of the number of blows required to penetrate every 15 cm to a maximum depth of 45 cm was made. The first 15 cm of drive was considered to be seating drive and was neglected. The total blows required to effect each 15 cm of penetration was recorded. The "N" values were obtained by counting the number of blows required to drive the spoon from 15 cm to 45 cm. On completion of a test, the split spoon sampler was opened and soil specimens were preserved in polythene bags for logging purpose.

All the boreholes were sunk with winch. However, raising of hammer for SPT was done manually. Hence there will not be any inertia loss and the efficiency of hammer blows should be considered as 100%.

2.4 Measurement of Water Table

Level of water was noted when struck in. This is termed as observed water level. Standing water level after 24 hours of removal of casing was also noted and shown in the profile.

Project: Proposed Building at Mouza- Shyamnagar now Krishnapur, C.S.Dag No.- 960 - 966.

3. Laboratory Testing

For proper identification and classification of the sub-soil deposits and for deriving adequate information regarding its relevant physical and geotechnical properties at the site under investigation, the soil samples from the 10 cm diameter sampling tubes were extracted in the laboratory by pushing out the core by using the extractor frame. The core was jacked out in a direction that corresponded with the soil movement within the tube during sampling. In general, the following laboratory tests were conducted on the soil samples collected from the exploratory bore holes:

- a) Grain size distribution (Sieve as well as Hydrometer).
- b) Determination of Atterberg Limits.
- c) Determination of Natural Moisture Content.
- d) Determination of Specific Gravity.
- e) Determination of Bulk & Dry Unit Weight.
- Strength determination by Triaxial Unconsolidated Undrained Test (UU).
- g) Strength Determination of Unconfined Compression Test on (UC)
- h) One-dimensional Consolidation Test for determining settlement potentiality.

The triaxial tests/unconfined compression test 38 mm diameter x 76 mm long specimens were obtained by jacking out the soil core into thin-walled brass tubes. The inside of the tubs was coated with a thin layer of silicon oil. Self-explanatory test results are presented in the Appendix.

To obtain specimens for consolidation test the odeometer ring was placed on the trimmed horizontal face of the soil within the 10 cm sampling tube and the soil around the cutting edge was gradually removed with a spatula as the ring was gently pushed into the soil. The ring with the soil was then removed by cutting across the soil core with the help of a piano wire saw.

Geotechnical Exploration

Structural Experts

Project: Proposed Building at Mouza- Shyamnagar now Krishnapur, C.S.Dag No.- 960 - 966.

The laboratory tests were done to ascertain the engineering properties of the subsoil and to obtain the necessary data required to design the foundation. These are detailed below. Summary of all the test results are given in a tabular form in Table -1.

3.1 Atterberg Limits and Natural Water Content

Liquid limit, plastic limit and natural water content of the silty clay/clayey silt samples were determined (a) to classify the soil by the IS classification system and (b) to qualitatively assess their consistency and compressibility.

3.2 Bulk density

These were determined by measuring the weight and dimension of triaxial/unconfined compression test samples,

3.3 Undrained Triaxial Test/Unconfined Compression Test

These were run on the clay/ clayey silt samples to determine their shear strength. The cell pressures employed in triaxial tests were 0.5, 1.0 and 2.0 kg/cm². The samples were tested under quick condition at the rate of 1.25 mm/min and were loaded upto a maximum of 20% of axial strain.

3.4 Grain Size Analysis

The grain-size distribution of a quantity of representative samples were determined from sieve analysis/combined sieve analysis and hydrometer analysis. The results are plotted in the Appendix.

3.5 Consolidation Test

Consolidation tests were run in floating ring type odeometers, in an eight unit consolidation frame under standard load increment ratio of one, starting from ¼ kg/cm² and going up to 8 kg/cm². The e vs. log₁₀p curves are given in the Appendix.

Geotechnical Exploration

Structural Experts

Project: Proposed Building at Mouza-Shyamnagar now Krishnapur, C.S.Dag No.- 960 - 966.

Soil Profile and Properties

Based on visual classification and results of field and laboratory tests on the samples recovered the proposed site may be divided into the following major soil strata as described below:

	Layer Det	ails					(1000)	
Streams No.	Description	Depth beli	ow EGL (m)	Average Field N-	Balk Density (c/m3)	Liquid Limit (76)	Planticity Index (%)	Shear areagth Parameters
Ø.		From	To	Are	B	7	Pila	S.
1	Filled up by soil roots etc.	0.00	1.00/1.10	-	-		123	8
11	Firm yellowish brown clayey silt / silty clay with mica, brown spot.	1.00/1.10	5.00/5.30	7 10 8	1.84	43.3	21.1	C= 4.3 t/m ² , \$ =0 deg
ш	Soft to firm greyish silty clay / clayey silt with traces of decomposed woods.	5.00/5.30	11.00/11.40	3 to 7	1.69	52.2	25.6	C= 2.5 t/m ² , 6=0 deg
tv	Firm to stiff yellowish / bluish grey silty clay / clayey silt with rusty spots.	11.00/11.40	17.60/17.80	7 to 10	L86	42.4	20.8	C= 6.0 t/m ² ,
v	Stiff to very stiff yellowish hrown sandy clayey silt with mica.	17.60/17.80	20.10/20.80	14 to 20	1.90*	31.1	14.9	C= 10.7* t/m ² , \$\phi = 0 \deg
VI	Medium dense to dense yellowish brown silty fine sand with mica.	20.10/20.80	25.10	21 to 28	1.91*	Non- Plastic		C= 0 t/m², \$\phi = 30-32* deg

A profile through the boreholes and the distribution of Field N-value with depth are shown in Figure 2 and Figure 3 respectively.

5. Hydrogeology

The ground water table at the site was found to exist at 0.60 m, to 1.00m below the ground level for the boreholes explored during the time of investigation work.

Geotechnical Exploration

Structural Experts

Project: Proposed Building at Mouza- Shyamnagar now Krishnapur, C.S.Dag No. - 960 - 966

6. Calculations

6.1 Pile Foundation

For bored pile, load bearing capacity is calculated according to IS:2911 (Part-I/Sec-2)-2010.

Skin Friction

 $Q_{SF} = \sum A_S \alpha \tilde{C}$

for cohesive soil

∑ A_S K P_{Di} tan δ for granular soil

where,

As = surface area of pile stem

Č = average cohesion

α = reduction factor

K = co-efficient of earth pressure

PDi = effective overburden pressure

 δ = angle of wall friction between pile and soil

QSF = ultimate capacity due to skin friction

End Bearing

QEB = AP CP No

for cohesive soil

 $= A_P P_D N_a$

for granular soil

where.

Ap = cross-sectional area of pile tip

Nq , NC = bearing capacity factors

C_P = average cohesion at pile tip

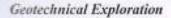
QEB = ultimate capacity due to end bearing

Safe bearing capacity of pile

$$= Q_{SAFE} = (Q_{SF} + Q_{EB})/FOS$$

where,

FOS = Factor of safety


Project: Proposed Building at Mouza- Shyamnagar now Krishnapur, C.S.Dag No.- 960 - 966.

7. Discussions on Foundation

The structure for which the subsoil exploration was conducted is proposed G+VIII storied building.

For anticipated load from superstructure, deep foundation in the form of R.C.C bored cast-in-situ piles is suggested. Piles of different termination level below EGL and different diameters are proposed with a cut-off level at -1.5m below E.G.L. The load carrying capacities of piles are presented below:

Pile diameter (mm)	Cut-off level	Pile termination level	Safe vertical capacity (t)	Safe uplift capacity (t)	Safe horizontal capacity (t)	Depth of fixity (m)
450	1.5m	15027000	50	34	4.5	4.05
500	below	21.0m below EGL	58	38	5.1	4.50
600	E.G.L.	below EGL	76	46	6.8	5.40
450	1.5m		55	39	4.5	4.05
500	below	24.0m below EGL	65	44	5.1	4.50
600	E.G.L.	Delow EGE	86	54	6.8	5.40

Structural Experts

BOSE ENGINEERS

Project: Proposed Building at Mouza- Shyamnagar now Krishnapur, C.S.Dag No.- 960 - 966.

8. Recommendations

- The subsoil characteristic of site at Mouza- Shyamnagar now Krishnapur, C.S.Dag No.- 960 966, C.S Khatian No. 28 in respect of Municipal Holding No.-72, Gouri Nath Shastri Sarani, J.L. No.- 32/20, Ward No. 27, Under South Dum Dum Municipality, P.S.- Dum Dum, Dist,-24 Parganas(N.) in connection with the construction of proposed G+VIII storied building was determined from soil exploration with two boreholes.
- Deep foundation in the form of RCC bored cast-in-situ piles are suggested for anticipated loading from the superstructure. The cut-off level of pile shall be 1.5m below E.G.L with different termination level below EGL. Safe load carrying capacities for such pile of different diameter shall be governed by table given in section 7.0.
- The load carrying capacities of the piles shall be checked and confirmed by pile load test.
 The piles should be placed at a centre to centre spacing of three times the diameter of the pile.
- Suitable pile cap shall be provided for the piles in a group.
 - The final decision regarding the foundation will depend on the judgment of the engineer concerned.

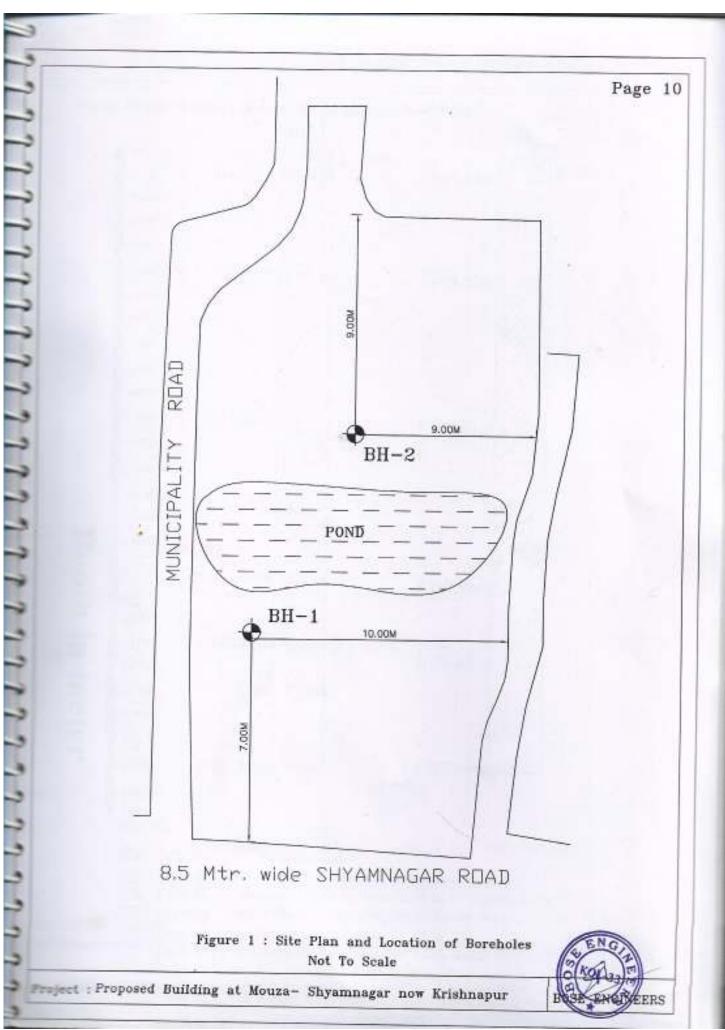
By

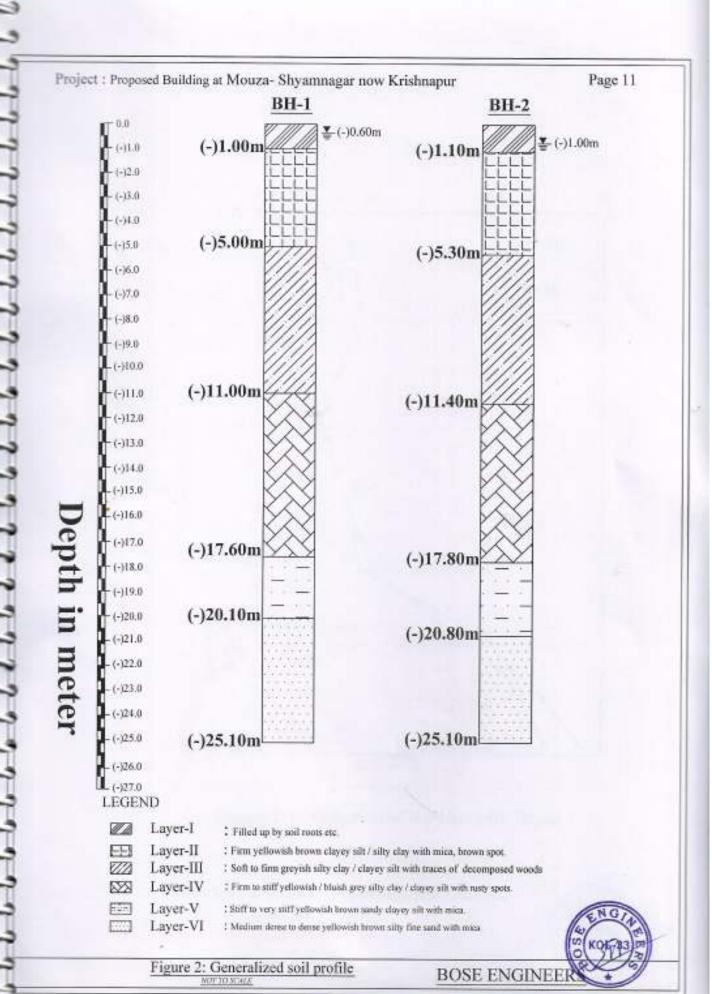
GEOTECHNICAL CONSULTANT

DR. S.K. BOSE

Ph.D., M.C.E. (SOIL), B.C.E. (HONS.), MIGS, MIRC

DR. SUJIT KUMAR BOSE


Ph.D., M.C.E. (Soil), B.C.E.(Hons.) MIGS, MIRC


> Empanneled Geotechnical Engineer (1) under KMC Licence No: GT-12

Geotechnical Exploration

Structural Experts

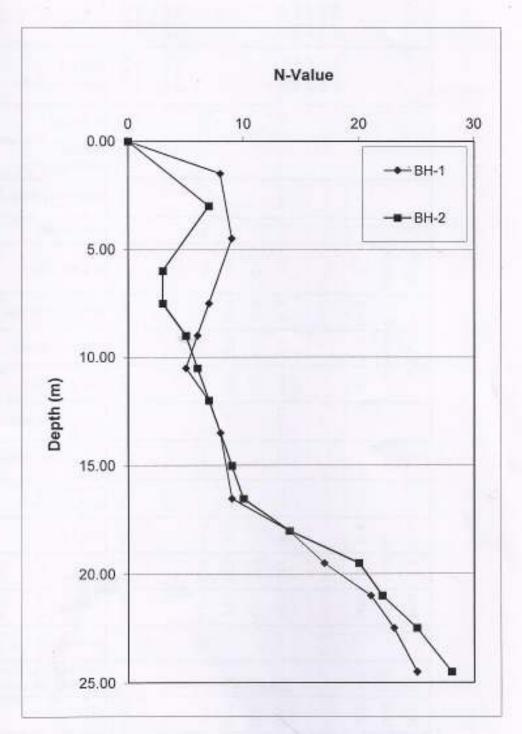


Figure 3: Distribution of N-Value with Depth

Proposed Building at Mouza- Shyamnagar now Krishnapur

TABLE 1: LABORATORY TEST RESULTS

(cup _{5/} kg)	0.0286 0.0285 0.0285	0.0143			0.0269	0.0200	0000		
aczanie Range		2.0-4.0			0.25-0.5	2.040	200		
Gravity	2.63	2 63	90.9		2.68				
ngle of Friction legree)		0	2		3.0				
o-hesion (kg/cm²)	0.43	0.25			9970				
ype of Test	3	3			3				
S Classification	0	¥	3	3			Ö	SW-SM	SW-SM
(%) saticity ludex (%)	22.8	30.3	25.6	28.8	21.6		15.6		
(%) imid (%)	23.3	31.1	26.6	29.3	22.8		16.6	_ - #	Non-Plastic
(%)timid biupi-	48.1	4.19	52.2	58.1	4.		32.2	S	−eN-
Dry density(gm/c.c.)	1.474	1.281			1.533		1.7		
Bulk Density (gm/cc)	1.849	1.692			1.873				
Matural Moisture Content (%)	25.4	32.1			22.2				
(%) Key)	33.8	47.00	36.5	40.1	8,3		21.4	14	42.
(%) 1115	63.3	57.2	62.2	58.8	62.7		54.4	10,75	-68-
(%) pues	2.91	0.99	1.31	1.11	2.98		24.25	89.25	90.08
(%) lavei		41			Y.		1		,
Standard Penetration		10	9	-	9		=	23.	XI
Depth (m)	3.00	9.00	9.00	12.00	15.00		18.00	21.00	24.50
1)ype	>	ס	α.	a.	2		т.	P 22	E I
Bore Hole No.				L-H	23		-		a.

UC: Unconfined Compression Test UU: Unconsolidation Undrained Test

TABLE 1: LABORATORY TEST RESULTS

7777777777777777777777777777777777777

m, (cm ^{2/} kg)		0.0241 0.0241 0.0144 0.0097			0.0275 0.0225 0.0178 0.0132 0.0030				
Pressure Range (kg/cm²)		0.25-0.5 0.5-1.0 1.0-2.0 2.0-4.0 4.0-8.0			0.25-0.5 0.5-1.0 1.0-2.0 2.0-4.0 4.0-8.0	T			
Sp. Gravity	2.65	2.64	Т		2.67				
Angle of Friction (degree)	2.0	2.0			3.0				
Co-pesion (kg/cm²)	0.45	0.43			0.80				
Type of Test	3	3			3				
nodeofileselD SI	5	ō	5	B	ō	ō	r C	SW-SM	SW-SM
Plasticity Index (%)	21.1	21.8	27.4	28.4	23.2	20.8	14.9	0	t)
Plastic Limit (%)	22.2	23.3	28.8	29.4	24.1	21.6	16.2	Non-Plastic	Non-Plastic
Liquid Limit(%)	43.3	45.1	58.2	67.8	47.3	45.4	31.1	-ğ-	-ğ-
Dry density(gm/c.c.)	1.504	88			1,504				
Bulk Density (gm/cc)	1.883	1.863	ī		1.866		7		
Natural Moisture Content (%)	23.9	24.7		ī	24.1				
Clay (%)	32.6	5.5	37.2	39.6	33.2	31.7	15.4	.52	.0
(%) 1115	64.2	65.5	61.4	59.2	64.1	65.5	64.4	12.2	7.80*
(%) pues	3.18	3.00	1,42	1.18	2.71	2.78	20.18	87.75	92.20
Gravel (%)			13		0		-1		
Standard Penetration Resistance 'N' value	4		m	9		\$	20	25	28
Debty (w)	1,50	4.50	7.50	10.50	13.50	16.50	19.50	22.50	24.50
1ype	>	э	D.	n,	2	n.	۵	a	D.
Bore Hole No.					Z-H8				

UC: Unconfined Compression Test UU: Unconsolidation Undrained Test

BOSE ENGINEERS

BORE / DRILL LOG BH-1

Projecti

Geotechnical Investigation for proposed G+VIII storied building at Mousa-Shyamnagar now Krishnapur, C.S.Dag No.-960 -966, C.S Khatian No. - 28 in respect of Municipal Holding No.-72, Goari Nath Shastri Sarani, J.L. No.- 32/20, Ward No. - 27, Under South Dum Dum Municipality, P.S.- Dum Dum, Dist.-24 Parganis(N)

0.60m b.g.l.

Location 1 Krishnapur

Water Level (Static):

Standing Water Level:

Ground Elevation:

Bore Hole No. 1

Method of Boring / Drilling:

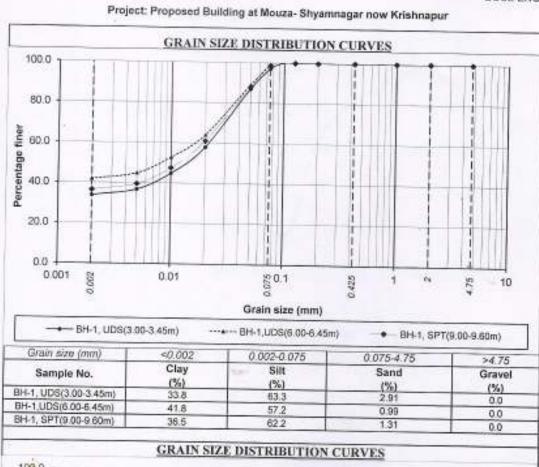
Dia of Boring / Drilling:

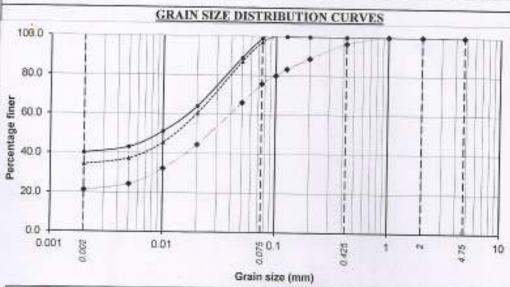
Thota / From: 06 06 18 To

Wash & Auger

0.0m

150 mm

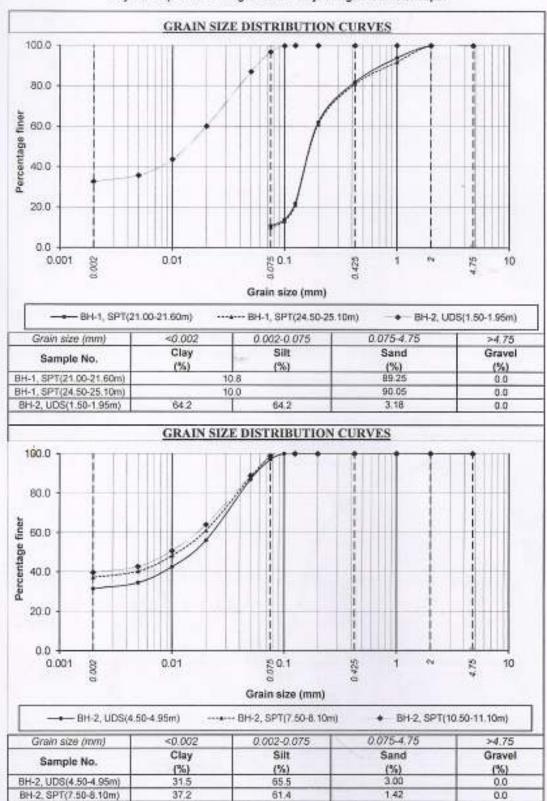

07.06-18


Û	Depth	(m)	2	phing		SPT	No of	Nows		
Date (dd / mm)	From	To	Longth (m)	Nature of Sumpling	0-15 cm	15-30 cm	38-45 cm	45-60 cm	W Value	Description_
6.06.18	0.50			D						Filled up by soil roots etc.
	1.00			D	J V	100				1.00m
	1.50	2.10	0.60	Р	3	4	4	5	8	Firm yellowish brown clayey silt / sity clay with mice, brown spot.
	3.00	3.45	0.45	u		58				
	4.50	5.10	0,60	P	3	4	3	5	9	5.00m
	6.00	6.45	0.45	U.						Firm greyish sifty clay / clayey sift with traces of
	7.50	8.10	0.60	P	3	4	3	3	7	decomposed woods
	9.00	9.60	0.60	P	4	3	3	4	0	
	10.50	11.10	0.60	P	2	2	3	3	5	11.00m
- 1	12.00	12.60	0.60	p	2	3	4	5	7	
	13.50	14.10	0.60	P	3	3	5	7	8	Firm to stiff yellowish / bluish grey sity day / daye sit with rusty spots.
	15.00	15.45	0.45	tr						163.00
	16.50	17.10	0.60	P	3	4	5	6	9	17.60m
	18.00	18.60	0.60	P.	:5	7	7	9	14	Stiff yellowish brown sandy clayey silt with mica.
	19.50	20.10	0.60	P	6	8	9	10	17	20.10m -
	21.00	21.60	0.60	p	7	9	12	14	21	
	22.50	23.10	0.60	P	8	10	13	15	23	Medium dense to dense yellowish brown sity fine sand with mica.
07.06.18	24.50	25.10	0.60	P	8	n	14	17	25	
	25.10	(T	erminati	on Dep	(6)					



BOSE ENGINEERS BORE / DRILL LOG Geolechnical Investigation for proposed G+VIII storied building Project: Bore Hole No. 7 at Mouza- Shyamnagar now Krishnapur, C.S.Dag No. - 960 -BH-2 966, C.S. Khalim Nu. - 28 in respect of Municipal Holding No. -72, Gouri North Shastri Sorani, J.L. No. - 32/20, Ward No. - 27, Under South Dum Dum Municipality, P.S.- Dum Dum, Dist-24 Porganos(N) Location; Krishnapur Ground Elevation : 0.0m Woter Level (Static): Method of Boring / Drilling : Wash & Auger Standing Water Level: 1.00m 8.g.l Dia of Boring / Drilling: 150 mm Casing Lowered: 2.0m Date: From 07.05.18 To 08.06.18 Depth (m) Nature of Speepling SPT: No. of blows B Length (P.D Description Film 5-30 cm 2 Sate 易 30-45 45-60 07.06:18 0.50 D Filled up by soil roots etc. 1.00 D 1.10m 1.50 1.95 0.45 U Firm yellowish brown clayey sit: / sitty clay with 3.00 3.60 0.60 p 2 4 7 mica, brown spot. 4.50 4.95 0.45 U 5.30m 6.00 6.60 0.60 P 2 2 3 7.50 8.10 0.60 P 2 3 Soft to firm greytsh sity day / dayey sit with 9.00 9.60 0.60 P traces of decomposed woods 2 3 4 5 10.50 11.10 0.60 pi 2 3 3 5 6 11.40m 12.00 12.60 0.60 p 2 3 4 5 σ 13.50 13.95 0:45 H Firm to stiff yellowish / bluish grey sity day / clayey Sil 15.00 15.60 0.60 p 4 5 9 16.50 17.10 0.60 P 3 5 5 7 10. 18.00 18.60 0.60 P 5 6 8 9 17.80m 54 Stiff to very stiff yellowish brown sandy clayey sitt 19:50 20.10 0.60 with mica. 6 ø 11 13 20 20.80m 21.00 21.60 0.60 8 10 12 13 22 22.50 23:10 0.60 Þ 0 12 13 15 25 Medium dense to dense yellowish brown sity fine sand with mica. 08.06.18 24.50 25.10 0.60 p 11 13 15 17 28 25:10 (Termination Depth)

------- BH-1,UDS(15.00-15.45m)


*Sit & Clay

--- BH-1,SPT(12,00-12,60m)

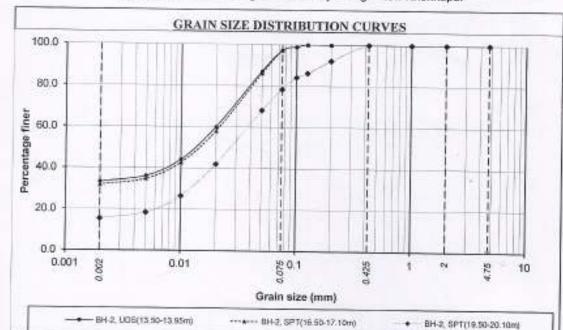
8H-1,SPT(18.00-18.60m)

Project: Proposed Building at Mouza- Shyamnagar now Krishnapur

59.2

1.18

'Sit & Clay


BH-2, SPT(10.50-11.10m)

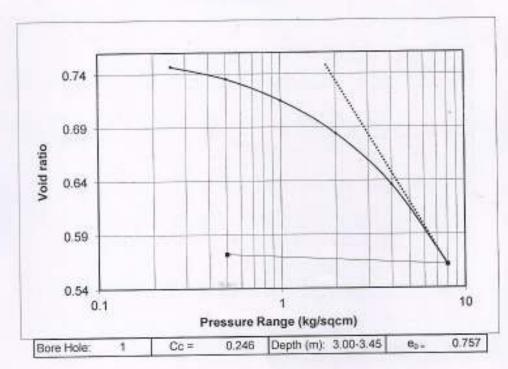
39.6

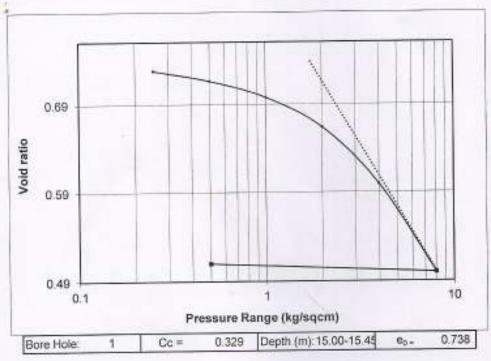
0.0

Project: Proposed Building at Mouza- Shyamnagar now Krishnapur

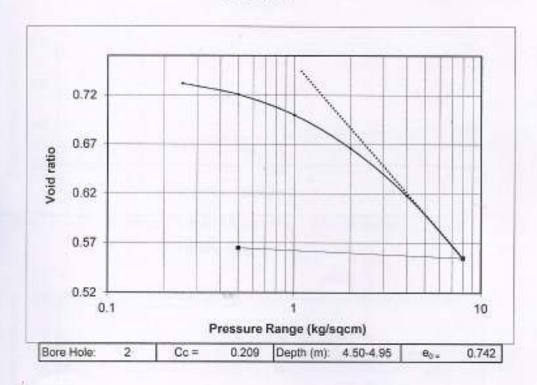
				10 04000000
Grain size (mm)	< 0.002	0.002-0.075	0.075-4.75	>4.75
Sample No.	Clay (%)	Silt (%)	Sand (%)	Gravel
BH-2, UDS(13.50-13.96m)	33.2	64.1	2.71	0.0
BH-2, SPT(16.50-17.10m)	31.7	65.5	2.78	0.0
BH-2 SPT/10 50-20 10m\	15.4	211	00.14	0.0

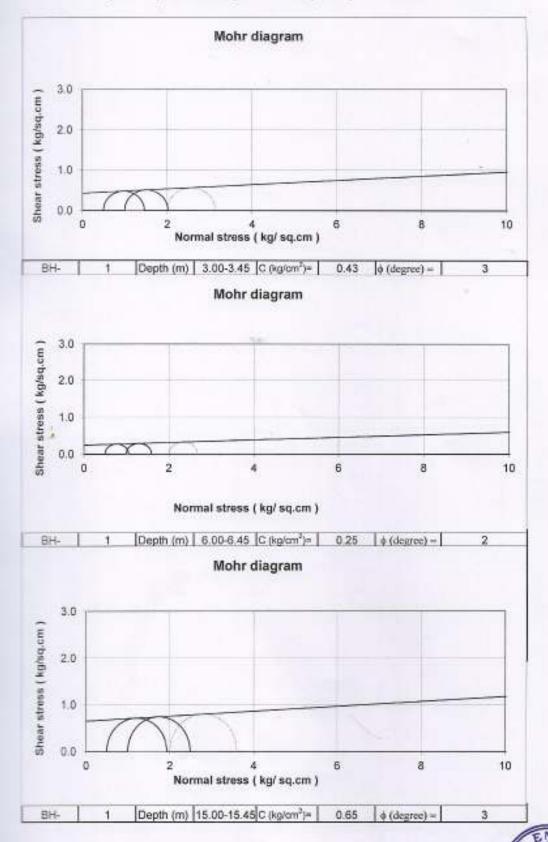
GRAIN SIZE DISTRIBUTION CURVES 100.0 0.08 Percentage finer 60.0 40.0 20.0 0.0 0.001 0.000 0.01 9.0.1 425 25 10 Grain size (mm)


—•— BH-	2, SPT(22.50-23.1)	2m)				
Grain size (mm)	<0.002	0.002-0.075	0.075-4.75	>4.75		
Sample No.	Clay (%)	Sift (%)	Sand (%)	Gravel (%)		
BH-2, SPT(22.50-23.10m)		2.3	87.75	0.0		
BH-2, SPT(24.50-25.10m)		7.8	92.20	0.0		

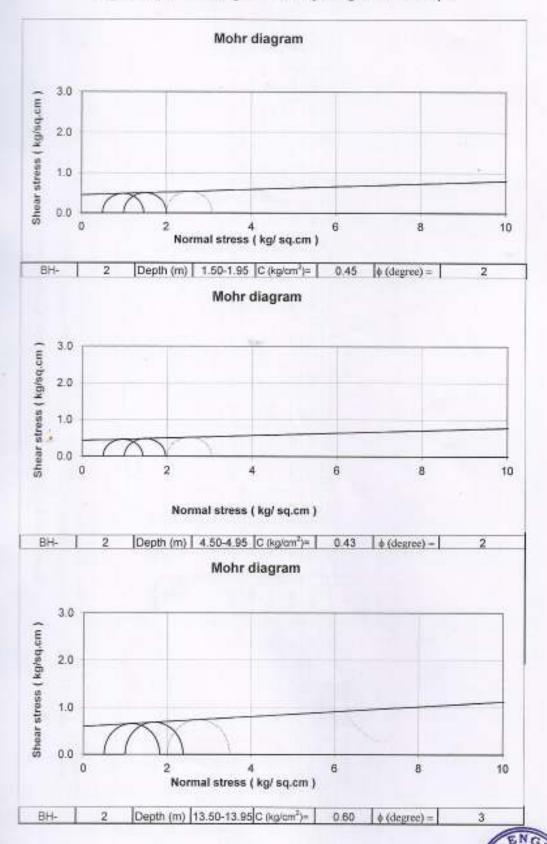

- BH-2, SPT(22.50-23.10m)

Project: Proposed Building at Mouza- Shyamnagar now Krishnapur e-logp curve




Project: Proposed Building at Mouza- Shyamnagar now Krishnapur

e-logp curve



Project: Proposed Building at Mouza- Shyamnagar now Krishnapur

Project: Proposed Building at Mouza- Shyamnagar now Krishnapur

77777777777

Heart Hearth

Determination of Vertical Load Bearing Capacity of "Bored Cast-in-situ Pile"

				Total UP.
	00'0	22.50	a.c.A.)	
	Snowel Level RL(m)n	File Length (m)s	Shaft Friction P. = (20%, P., Tans), A., a.c.A.)	
	-1.50 m	-24.00	off Friction	
i				III. Our banks
Based on Bore Hole Steel	Dut On Lawer (R.)	His fig Lewings	. 4.4.7	8
Based	5	18	5, b NJ	
			The Bestmer, Port A,* (C.N. + q.N. + 0.5 1.0 N.)	
aldere 25	Frethn 2.5		fixed or Reported? a major	
Sofety for Sons Scotterus 2.9	Toche of Safety for Shaff Frietlen 2.5			Eff. Over-bordes Pressure at Nation of Laper
factorial	Parter o			
				Aspect Na
1		×		A significant
800	8 #	-9.0		Colorin, C
Wie Diameter	Corth Pressure Castificians, Co			Market County County County County County Agil at Nat Late And Late Service County
	Sorth Preside	Orthod Depth		Delay frantis (c)
				2 5

	(Tomas)		12.1	100	24	51.4	64.6	
	Tetal UR. Espealty, P. (Taeses)		30.8	15.15 17.17	103.7	97821	161.5	
(A.)	2	00.0	88.59	47.08	111'00	109.72	130.70	
Shaft Friction $P_{\rm tot}$ =($2(K_{\rm s},P_{\rm de},{\sf Tans}),A_{\rm st}$, a.e.A _s)	425	900	95.25	24.50	46.03	35.50	000	
Tans)		1.000	0.955	1,000	0,740	0.395	00000	
=(20%,P	1	000	000	000	000	000	20,04	
tion P _m	Kapan Kapan	000	000	000	000	000	342	
oft Fric	197	000	200	9.42	10.57	193	6.13	
45	III. Own Parents of Co. of the Total	000	147	22,0	R	679	575	+
	ěĬ	0.000	7.503	4,595	10,608	18,908	30,776	*
New Resistance, Fr A, T. (C.N 4.N.)	ear an,	000	000	00'0	000	000	6.26	Upliff Coposity *
interes. P.	1	000	00.0	000	000	000	150.48	Upliffo
No. No.	3	38.00	36.70	23,40	9400	98.30	000	
į	2	000	000	000	0000	000	27.53	
find a Appellit cap	≠	000	000	000	000	0.00	26.40	
Book	Z	9.00	9.00	9.00	9.00	9.00	9.00	
	A Promote of Program of April 19 (19 Promote of April 19 Promote o	000	2,94	67.0	9.70	5.70	920	×
	Section (Section)	0.900	0.840	0.690	0.850	0,900	0.910	99
	August of Wall Controlled frontiers and Committee of August and Committee of A	0.0	00	000	0:0	00	81.0	
	Angle of Shorting Benefiting	0	0	0	0	0	31	750.0
	36	2.0	4.3	2.5	6.0	10.7	0.0	ng Capicity of
	The state of the s	90	8.9	9	1	2.5	3.9	Saft Leaf Carying Capicity of Pile
	Podicy Favorities (3)	-1.00	-5.00	-11.00	-17.60	-20.10	-25,10	-
	Z S Z	000	87	-8.00	-11.00	-57.60	-20 10	

Sample Calculation to Determine Horizontal Capacity

Code used:	IS 2911 (Part1/sec-2)	2010	
Diameter of pile =		500 mm	
Grade of concrete =		25 M	
Grade of reinforces	ment =	415 Fe	
Percentage of reinforcement =		1.0	
Nature of soil offering resistance =		Cohesive	
K ₂ =		20000 kN/m ²	(Table-4 Annex C)
Effective cover of reinforcement, d1 =		80 mm	
K=		8000.0	
Modulus of Elastic	ity of concrete, E =	25000000 kN/m ²	
Moment of Inertia,	I=	0.003068 m ⁴	
n	2.00		

R=	2.09 cm

41 -		0 cm	No.	
$L_1/R =$	0.00			
From Fig. 2		$L_f/R =$	1.9 For Fre	e Head Pile
		=	2.15 For Fix	ed Head Pile
Hence,		$L_{i'} =$	3.98 m	For Free Head Pile
21			4.50 m	For Fixed Head Pile

For Free Head Pile:

7777777777777777777777777777777777

Deflection at the pile head =	0.0003 xQ	cm
Maximum allowable deflection =	0.5 cm	
Q=	1.83 t	
For Fixed Head Pile :		
Deflection at the pile head =	0.00010 xQ	cm
Maximum allowable deflection =	0.5 cm	

Therefore, consider horizontal capacity for fixed head pile = 5.1 t