
Axpert Functions (A - Z)

Function : Abs

Syntax : Abx(Number)

Description : Returns the absolute value

Function : AddToDate

Syntax : AddToDate(DateValue,NumberToIncrease)

Description : Adds the given number to Date.

Example :

AddToDate(Ctod({01/04/2007}, 10)

Result : 10/04/2007

Function : AddToMonth

Syntax : AddToDate(DateValue,NumberToIncrease)

Description : Adds the given number to the month of Date.

Example :

AddToMonth(Ctod({01/04/2007}, 5)

Result : 10/08/2007

Function : AmtWord

Syntax : AmtWord(Amount : Numeric)

Description : Converts the given Amount to words.

Example :

AmtWord(1356.50)

Result : One thousand three hundred and fifty six and paise fifty only.

Function : Bulkexecute

Syntax : Bulkexecute(SQLText)

Description : Fires the given SQL. Expects the first column in the SQL result to

be an SQL text. Fires this SQL text from every row in the result. This can be used

to do complex SQL processing.

Function: BulkPrinting

Syntax: bulkprinting(sqlstring:String)

Description: This function can be called from expressionlist and userdefinedtask.

 'sqlstring' should be a select statement.

 The 'select' statement should have transid,recordid and formname

columns.

Example
 Define an action in source transaction. The action event should be after

save transaction and task should be a userdefined task. Content of the userdefined

task should be as

 s := {select 1 as slno, 'teste' as transid,
'10111000018588' as recordid, 'eprint.doc' as formname

from dual union select 2 as slno, 'testa' as transid,

'10146000015108' as recordid, 'testprint.doc' as

formname from dual union select 3 as slno,'teste' as

transid, '10122000019105' as recordid, 'eprint.doc' as

formname from dual} bulkprinting(s)

Function : CheckStock

Syntax : CheckStock(ItemId, OldItemId, DocDate, OldDocDate, PlusOrMinus,

Qty, OldQty)

Description : Checks if enough stock is available to carry out the transaction for

the given ItemId as on given DocDate for the Qty. In case of modification mode,

the old values will be used if the modification can be allowed. The function will

return T if the transaction can be allowed or else a message will be returned.

Function : CMonthYear

Syntax : CMonthYear(Dt : DateTime)

Description : Returns the character month and four digit year from the given date.

Example :

CMonthYear('01/04/2004')

Result : April 2004

Function : Constructtable

Syntax : Constructtable(SQLText, TableName)

Description : Expects the SQL result to contain fieldname, datatype, width and

decimal as columns.

A table with the TableName specified will be created at the backend .

Function : Convertmd5

Syntax : convertmd5(string)

Description : Converts the given stringvalue to MD5

Function : CopyFileTo

Syntax : CopyFileTo(Source, Destination)

Description : CopyFileTo is a function used to copy the file specified in Source to

the file specified in Destination. CopyFileTo will return False if the file in

Destination already exists

Function : CreateDbf

Syntax : CreateDbf(SQLText, DirName,TableName)

Description : Creates a dbf file in the directory given by DirName. The result of

the SQL text is created as the contents of the table. The name of the table will be

TableName.

Function : CreateWordDoc

Syntax : CreateWordDoc(FileName)

Description :Creates a new MS Word file and opens MS Word for editing.

Funtion : CTOD

Syntax : CTOD(Dt : String)

Description : Converts character to DateTime type

Function : CurrAmtWord

Syntax : CurrAmtWord(Amount : Numeric, Currency, SubCurrency, InMillions:

Boolean, Decimals :integer)

Description : Converts the given amount to words as per the specification.

Currency - Name of the currency to convert to.

SubCurrency - Name of the sub currency

InMillions - {T} if amount should be in millions.

Decimals - number of decimal digits in the amount.

Example :
CurrAmtword(1200000, {Dollars}, {Cents}, {T}, 2)

Result : One million two hundred thousand only.

CurrAmtword(1200000, {Rupees}, {Paise}, {T}, 2)

Result: Twelve lacs only.

Function : Date

Syntax : Date()

Description : Returns today's date.

Function : Dayofdate

Syntax : Dayofdate(dt : DateTime)

Description : Returns the day of date.

Function : DaysElapsed

Syntax : DaysElapsed(date1, date2)

Description : Returns the number of days elapsed between date2 and date1.

Function : DoMRP

Syntax : DoMRP(StartDate, EndDate)

Description : Runs the MRP for all records in the demand table between given

start and end date. It expects the stock available in the stockvalue table, item

master to be present in itemmaster table, bom to be present in Bomtable.

Function : DTOC

Syntax : DTOC(Dt : DateTime)

Description : Converts a Datetime to String.Useful in passing date type of

variables to functions that expect string as a parameter.

Function : Eval

Syntax : Eval(ExpressionVar)

Description : ExpressionVar is a variable that should consist of an axpert

expression. That expression will be evaluated and the value will be returned.

Function : Extractnum

Syntax : Extractnum(StringValue)

Description : Extracts only the number that is embedded in a string. This can be

useful in getting numeric values from a string when reading from XML tags.

Funtion : FindAndReplace

Syntax : FindAndReplace(S, FindWhat, ReplaceWith: String)

Description : Finds the string given by FindWhat and replaces it with

ReplaceWith in String S and returns the new string.

Example :

FindAndReplace({xxxyyyzzz}, {xxx}, {aa})

Result : aayyyzz.

Function : Firesql

Syntax : Firesql(SQLName, SQLText)

Description : Fires the given SQL and stores the result set in a dataset identified

by the given SQLName. The result set can be accessed in subsequent expressions

using the FindRecord and SQLGet functions. To these functions the name of the

SQL should be provided.

Function:FormatAmount

Syntax:

FormatAmount(Value,DecLen:numeric,withComma,MillionRep,NegativeRep,Pos

itiveRep : String)

Description: This will format the number given in Value parameter.

DecLen is number of decimals.

WithComma - if {T} will insert commas.

MillionRep - if {T} will insert commas as it is in a millions system.

NegativeRep - if {br} then shows negative amounts within parenthesis else

appends the given string to the negative number.

PositiveRep - if {br} then shows negative amounts within parenthesis else appends

the given string to the positive number.

Example :

FormatAmount(100000, 2, {F}, {br}, {}) -> 1,00,000.00

FormatAmount(-100000, 2, {F}, {br}, {}) -> (1,00,000.00)

FormatAmount(100000, 2, {F}, {Cr}, {}) -> 1,00,000.00 Cr

FormatAmount(100000, 2, {T}, {}, {Db}) -> 100,000.00 Db

Function : FormatDateTime

Syntax : FormatDateTime(formatstring, datetimevariable)

Description : The given datetimevariable will be converted using the given

formatstring.

If the formatstring is empty, the datetimevariable is formatted as if a 'c' format

specifier had been given.

The first form of FormatDateTime is not thread-safe, because it uses localization

information contained in global variables. The second form of FormatDateTime,

which is thread-safe, refers to localization information contained in the

FormatSettings parameter. Before calling the thread-safe form of

FormatDateTime, you must populate FormatSettings with localization information.

To populate FormatSettings with a set of default locale values, call

GetLocaleFormatSettings.

Date Time Format Strings are composed from specifiers that represent values to be

inserted into the formatted string. Some specifiers (such as "d"), simply format

numbers or strings. Other specifiers (such as "/") refer to locale-specific strings

from global variables.

In the following table, specifiers are given in lower case. Case is ignored in

formats, except for the "am/pm" and "a/p" specifiers.

Specifier Displays

c Displays the date using the format given by the ShortDateFormat global variable, followed by the time using the

format given by the LongTimeFormat global variable. The time is not displayed if the date-time value indicates

midnight precisely.

d Displays the day as a number without a leading zero (1-31).

dd Displays the day as a number with a leading zero (01-31).

ddd Displays the day as an abbreviation (Sun-Sat) using the strings given by the ShortDayNames global variable.

dddd Displays the day as a full name (Sunday-Saturday) using the strings given by the LongDayNames global

variable.

ddddd Displays the date using the format given by the ShortDateFormat global variable.

dddddd Displays the date using the format given by the LongDateFormat global variable.

e (Windows only) Displays the year in the current period/era as a number without a leading zero (Japanese, Korean

and Taiwanese locales only).

ee (Windows only) Displays the year in the current period/era as a number with a leading zero (Japanese, Korean

and Taiwanese locales only).

g (Windows only) Displays the period/era as an abbreviation (Japanese and Taiwanese locales only).

gg (Windows only) Displays the period/era as a full name. (Japanese and Taiwanese locales only).

m Displays the month as a number without a leading zero (1-12). If the m specifier immediately follows an h or hh

specifier, the minute rather than the month is displayed.

mm Displays the month as a number with a leading zero (01-12). If the mm specifier immediately follows an h or hh

specifier, the minute rather than the month is displayed.

mmm Displays the month as an abbreviation (Jan-Dec) using the strings given by the ShortMonthNames global

variable.

mmmm Displays the month as a full name (January-December) using the strings given by the LongMonthNames global

variable.

yy Displays the year as a two-digit number (00-99).

yyyy Displays the year as a four-digit number (0000-9999).

h Displays the hour without a leading zero (0-23).

hh Displays the hour with a leading zero (00-23).

n Displays the minute without a leading zero (0-59).

nn Displays the minute with a leading zero (00-59).

s Displays the second without a leading zero (0-59).

ss Displays the second with a leading zero (00-59).

z Displays the millisecond without a leading zero (0-999).

zzz Displays the millisecond with a leading zero (000-999).

t Displays the time using the format given by the ShortTimeFormat global variable.

tt\ Displays the time using the format given by the LongTimeFormat global variable.

am/pm Uses the 12-hour clock for the preceding h or hh specifier, and displays 'am' for any hour before noon, and 'pm'

for any hour after noon. The am/pm specifier can use lower, upper, or mixed case, and the result is displayed

accordingly.

a/p Uses the 12-hour clock for the preceding h or hh specifier, and displays 'a' for any hour before noon, and 'p' for

any hour after noon. The a/p specifier can use lower, upper, or mixed case, and the result is displayed

accordingly.

ampm Uses the 12-hour clock for the preceding h or hh specifier, and displays the contents of the TimeAMString global

variable for any hour before noon, and the contents of the TimePMString global variable for any hour after noon.

/ Displays the date separator character given by the DateSeparator global variable.

: Displays the time separator character given by the TimeSeparator global variable.

'xx'/"xx" Characters enclosed in single or double quotes are displayed as-is, and do not affect formatting.

Function : Filewrite

Syntax : Filewrite((Formatfile, TargetFile)

Description : Used in a TStruct to convert the data related to a transaction into any

ASCII file format.

The format of the ASCII should be created and stored prior to using this function.

Fields are represented in the file within curly braces. In case one of the lines in the

format file consists of grid fields, then the line will be repeated for the rows in the

grid.

This can be used to create any kind of file formats for interfacing with other

devices like barcode printer or to enable electronic data interchange (EDI)

Function : Findrecord

Syntax : Findrecord(SQLName, ColumnName, ColumnValue)

Description : Finds the record that has the given ColumnValue in the given

columnname in the SQL result identified by SQLName.

Function : Getdelimitedstr

Syntax :Getdelimitedstr(SQLName, ColumnName, Delimiter)

Description : All the values in the column will be concatenated to a single string

separated by the delimiter.

Example : A comma separated string can be created by setting the delimiter as ‘,’.

Function : GetId

Syntax : GetId({FieldName}, RowNo: Integer)

Description : Returns the record id of a normalized selection field at the given

rowno.

Function : GetInteger

Syntax : GetInteger(Value :numeric)

Description : Returns the integer part in a decimal number.

Example :

GetInteger(12.33)

Result : 12.

Function : GetLength

Syntax :GetLength({value})

Description : Returns the length of the string.

Example :

GetLength({xyz})

Result : 3.

Function : GetMax

Syntax : GetMax({ColumnName })

Description : Applicable only to grid fields.Returns the row that contains the

maximum value in a column in a grid DC.

Use in : TStructs

Example:

Consider a grid frame as follows

Sno Category Amount

1 A 100.00

2 A 200.00

3 B 300.00

4 C 400.00

5 A 500.00

GetMax({Amount})

Result : 5 (5th row contains the maximum value in the amount column)

Function : GetMin

Syntax : GetMin(ColumnName)

Description : Applicable only to grid fields.Returns the row in the grid that

contains the minimum value in the column given by fieldname.

Use in : TStructs

Example:

Consider a grid frame as follows

no Category Amount

1 A 100.00

2 A 200.00

3 B 300.00

4 C 400.00

5 A 500.0

GetMin({Amount})

Result : 1 (the 1st row contains the minimum value in the amount column)

Function : GetMod

Syntax : GetMod(numerator, denominator)

Description : Returns the reminder after division.

Function : GetRow

Syntax : GetRow({ColumnName }, Fieldvalue)

Description : Gets the first row that matches the given fieldvalue in the column.

Use in : TStructs

Example:

Consider a grid frame as follows:

Sno Category Amount

1 A 100.00

2 A 200.00

3 B 300.00

4 C 400.00

5 A 500.00

GetRow({Category}, {A}) returns 1. Only the first matching rowno is returned.

Function : GetRowCount

Syntax : GetRowCount({Columnname})

Description : Returns the number of rows in the grid under the given column

name.

Use in : TStructs

Example:

Consider a grid frame as follows

Sno Category Amount

1 A 100.00

2 A 200.00

3 B 300.00

4 C 400.00

5 A 500.00

GetRowCount({Category})

Result : 5

Function : GetStockValue

Syntax :GetStockValue(ItemMasterID, TransDate, Qty, ValuationMethod,

LocationId)

Description : Returns the issue value for Qty of an item as on the date given by

TransDate. The ItemMasterID is the record id of the required item. The

ValuationMethod can be ‘f’ for FIFO or ‘W’ for weighted average. The LocationId

parameter is optional. If this is provided, the issue value will be calculated

considering the stock in the given location.

Function : GetValue

Syntax : GetValue({Fieldname} , RowNo: numeric)

Description : Returns the value of the field at the given row.FieldName is the

name of the field. For fields in a non grid DC, give the rowno as 1.

Use in : TStructs

Example:

Consider a grid frame as follows

Sno Category Amount

1 A 100.00

2 A 200.00

3 B 300.00

4 C 400.00

5 A 500.00

GetValue({Category}, 3)

Result : B

Function : IIF

Syntax : IIF(Expression, True_Result, False_Result : String)

Description : Evaluates the expression.

If expression returns True, then the True_result is returned else the false_result is

returned.

Example :

iif(10 > 5, {Greater}, {Lesser})

Result : Greater

iif((10-6) > 5, {Greater}, {Lesser})

Result : Lesser

iif(10 < 5, {Lesser 1}, iif(10 < 11, {Greater 2}, {Lesser 2}))

Result : Greater 2

iif(10 < 5, {Lesser 1}, iif(10 > 11, {Greater 2}, {Lesser 2}))

Result : Lesser 2

iif((10-6) < 5, {Lesser 1}, iif(10 > 11, {Greater 2}, {Lesser 2}))

Result : Lesser 1

Function : IsEmpty

Syntax : IsEmpty(Value)

Description : Returns true if the given value is null.

Function : IsEmptyValue

Syntax : IsEmptyValue(Value, Datatype)

Description : Returns true if the given value is empty. However, zero in case of

numeric is not considered as empty.

Function : IsVarEmpty

Syntax : IsVarEmpty(Variablename)

Description : Returns true if the variable is empty.

Function : LastDayOfMonth

Syntax : LastDayOfMonth(DateVar)

Description :Returns the last day of the month in datevar. It can be 28, 29, 30 or

31.

Function : LeftPad

Syntax : LeftPad(S: String; MaxLength: integer; c: Char)

Description : If the length of the given string S is less than MaxLength, then pads

it to the left with the character given by c to make its length equal to MaxLength.

If the length of the given word is greater or equal to the MaxLength then the given

word is returned as it is.

Example :

LeftPad('abc', 5, 'x')

Result : 'xxabc'

Function : Lower

Syntax : Lower(Str : String)

Description : Converts the given string to lower case.

Function : MakeDate

Syntax :MakeDate(day,month,year)

Description :Returns the date

Function : Monthofdate

Syntax :Monthofdate(Date)

Description :Returns the month of date

Function : MandY

Syntax : MandY(PDate : Date)

Description : Returns the month and year in the given date in the format

YYYYMM.

Example :

MandY({01/04/2005})

Result : 200504

MandY({01/10/2006})

Result : 200610

Function :OpenDialog

Syntax : OpenDialog

Description : Displays the file open dialog to the user. The selected file name is

returned to the user.

Function : Pad

Syntax : Pad(S: String; MaxLength: integer; c: Char)

Description :Pads the string S to the right with the character given in C. If the

length of the given word is greater or equal to the MaxLength then the given word

is returned as it is.

Example :

Pad('abc', 5, 'x')

Result : 'abcxx'

Function : Power

Syntax :Power(ConstVal, Exponent)

Description : The result will be Constval raised to the given Exponent.

Function : RegVar

Syntax : RegVar(varname, datatype, value)

Description : Registers the varname as a variable. This can be used in axpert

expressions within the current structure

Function : Rnd

Syntax : Rnd(Amount, RoundTo : Numeric)

Description : Rounds off the given amount to the nearest given RoundTo figure.

The RoundTo could be 100 to round off the amount to nearest 100. If RoundTo is

50, the amount will be rounded to the nearest 50. This could be useful to roundoff

amounts to the nearest rupee or nearest 50 paise

Example :

Rnd(100.20, 50) Result : 100.00

Rnd(100.45, 50) Result : 100.50

Rnd(100.65, 50) Result : 100.50

Rnd(100.20, 100) Result : 100.00

Rnd(100.65, 100) Result : 101.00

Function : Round

Syntax : Round(Num , Decimals:Numeric)

Description : Rounds the given number to given decimals.

Example :

Round(100.334,2) Result : 100.33

Round(100.337,2) Result : 100.34

Function : SaveDialog

Syntax : SaveDialog

Description : Displays the save file dialog to the user. The selected file name is

returned to the user

Function : SetExtSequence

Syntax : SetExtSequence(TransId, FieldName, Prefix)

Description :The sequences defined in another TStruct could be used to generate

numbers for a field in the current TStruct. The TransId parameter is the name of

the other TStruct. This will enable sharing a single sequence across different

TStructs

Function : SetSequence

Syntax : SetSequence(FieldName, Prefix:String)

Description : Auto generated fields can have multiple sequences. Each sequence

is identified by a unique four letter prefix. There may be a need to set the sequence

for number generation based on the value set in another field. In the on exit even

of the field a user defined task could be written with a call to this function.. The

name of the auto generated field and the prefix that should be used for number

generation are passed as parameters.

Note : The functions related to numbering sequence viz SetSequence and

SetExtSequence cannot be used in OnFormLoad. Moreover, the case of the

parameters should exactly match the ones defined in the tables. If the field name is

defined in lower case, then parametric field name should also be in lower case .

Example:

Consider a TStruct that has a field name Type. This can have either A or B as its

value. If it is A, then the DocNo field following this field should have the 'AAA-'

sequence selected. If type is not A, then the sequence for DocNo should be 'BBB-

'.

seq := iif(Type = {A}, {AAA-}, {BBB-})

SetSequence({DocNo}, Seq)

Function : SetValue

Syntax : SetValue({FieldName },Rowno: integer;Value)

Description : Sets the value for the field at the given row to the given value. For

non grid fields, the rowno should be 1.

Example: Consider a TStruct that has a field named ItemCode in a Grid DC. If the

value of the itemcode in row 2 is to be changed to 'x1' use

SetValue({ItemCode},2,{x1}).

Function : Sqlget

Syntax : Sqlget(sqlname, columnname)

Description : Returns the value of the column in the SQL result from the current

record.

Function : SQLRegVar

Syntax : SQLRegVar(SQLText)

Description : This function will register the result of the SQL for using them in

expressions.The SQL text will be fired and a result set will be obtained. The SQL

result should have the following columns : VarName, VarType, VarValue The

function will register the given varname with the VarValue.

Example : If the SQL result is as follows:

VarName VarType VarValue

a1 n 100.00

a2 c abc

a3 d 01/04/2004

Three variables will be registered as follows : a1 = 100.00 a2 = abc a3 =

01/04/2004

These variables could be used in subsequent expressions.

Function: SQLPost

Syntax:SQlPost({sql},{TargetTransid},{PrimaryField},{GroupField}

Description: This function is similar to GenMap. This function will generate an

SQL statement, using the variables in the TStruct to post to another process

structure. It offers more flexibility than GenMaps. SQLPost can handle processes

in the background with no fornt-end user interaction, unlike with GenMaps. A

real-life scenario will be in the case of batch-controlled stock, where stock needs

to be issued, without the user choosing the batch from which issue has to be made.

SQLPost can handle this easily.

Example:

SQlPost({SELECT POType, ProductDivision, VehicleSalesDealerCode,

DealerPODate, DeliveryPlant, DealerPONumber,DeliveryPlant+DealerPONumber

PlantPONumber, PartNo, Qty FROM VW_POOUTBOUNDDTL where

POId=:recordid order by plantponumber

},{OBPOs},{PlantPONumber},{PlantPONumber})

Syntax:doStoreProcedure({procname},{inparam},{otparam})

Description: Calls a stored procedure using userdefined task

Example: doStoreProcedure({DoCost},{'01/01/2011'},{})

Function : Str

Syntax : Str(Num :Numeric)

Description : Converts given string to numeric.

Example :

Str({123}) Result :123.

Function : Stuff

Syntax :Stuff({Str1 }, {Str2}, P : Numeric)

Description : Inserts the str2 into str1 at position p.

Example:

Stuff({abcd}, {x}, 2) Result : axbcd

Stuff({abcd}, {}, 2) Result : acd

Stuff({abcd}, {xyz}, 2) Result : axyzbcd

Function : SubStr

Syntax : SubStr(S:string; Posn,Num:numeric)

Description : Returns num characters from Posn in the string S.

Example :

Substr({123Abc}, 4, 3) Result : Abc

Function : Sum

Syntax : Sum({ColumnName}, ColValue, {SumField })

Description : Returns the total value of the SumField from all rows in the grid

that has the Colvalue in the Columnname. Applicable only to Grid DC.

Use in : TStructs

Example:

Consider a grid frame as follows

Sno Category Amount

1 A 100.00

2 A 200.00

3 B 300.00

4 C 400.00

5 A 500.00

Sum({Category}, {A}, {Amount}) will return 800.

Function : SumTill

Syntax : SumTill({ColumnName }, ColValue, {SumField}, RowNo)

Description : Returns the total value of the SumField from all rows in the grid

that has the ColValue in the ColumnName and rowno less than or equal to the

given RowNo. Applicable only to Grid DC.

Use in : TStructs

Example:

Consider a grid frame as follows

Sno Category Amount

1 A 100.00

2 A 200.00

3 B 300.00

4 C 400.00

5 A 500.00

SumTill({ItemCategory}, {A}, {Amount}, 4) will return 300.

Function : Time

Syntax : Time()

Description : Returns current time.

Function : TimeElapsed

Syntax : TimeElapsed(d1, d2)

Description : Returns time elapsed between two given dates along with time.

Function : Total

Syntax : Total({FieldName})

Description : Returns the total value of the given field in a TStruct.FieldName is

the name of the grid column.Applicable only to grid DC

Use in : TStructs

Example:

Consider a grid frame as follows

Sno Category Amount

1 A 100.00

2 A 200.00

3 B 300.00

4 C 400.00

5 A 500.00

Total({Amount}) gives the result as 1500

Function : Trim

Syntax : Trim({Value})

Description : Trims spaces from the given string.

Function : Trimspace

Syntax : Trimspace({Value})

Description : Trims spaces from the given string.

Example :

Trimspace({ abc })

Result : abc

Function : Upper

Syntax : Upper(Str : String)

Description : Converts the given string to upper case.

Function : Val

Syntax :Val(Num:String)

Description : Converts given string to numeric.

Example :

Val({123})

Result : 123

Function : ValidEncodeDate

Syntax : ValidEncodeDate(year, month, day)

Description : Returns a date. If day is greater than highest day available in the

month then the day will be considered as the last day of the month.

Function : Yearofdate

Syntax : Yearofdate(date)

Description : Returns year of date

Function : XRun

Syntax : XRun(ApplicationName)

Description : Runs the given application. This function does a shell execute of the

given application name.

The application name can also be document name along with extension. If the

given extension is recognized by windows then the document will be opened using

the relevant application. For example if an MS word document file name is given

as a parameter then XRun will open MS Word and open the document file.

Parameters can be passed to the application. The application name and the

parameter name should be separated with a % character. If more than one

parameter needs to be passed, then each parameter should be separated with %

character.

